OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models

Ruth Diamant, Augusto Garcí-Valenzuela, and Manuel Fernández-Guasti  »View Author Affiliations

JOSA A, Vol. 29, Issue 9, pp. 1912-1921 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflectivity of a random monolayer, consisting of transparent spherical particles, is estimated using a graded refractive index model, an effective medium approach, and two scattering models. Two cases, a self-standing film and one with a substrate, are considered. Neither the surrounding medium nor the substrate are absorbing materials. Results at normal incidence, with different particle sizes, covering ratios and refractive indexes, are compared. The purpose of this work is to find under which circumstances, for reflectivity at normal incidence, a particle monolayer behaves as a graded refractive index film.

© 2012 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(290.1350) Scattering : Backscattering
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(310.6860) Thin films : Thin films, optical properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: June 19, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: July 21, 2012
Published: August 21, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Ruth Diamant, Augusto Garcí-Valenzuela, and Manuel Fernández-Guasti, "Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models," J. Opt. Soc. Am. A 29, 1912-1921 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am. 68, 1039–1044 (1978). [CrossRef]
  2. R. Lazzari, G. Renaud, C. Revenant, J. Jupille, and Y. Borensztein, “Adhesion of growing nanoparticles at a glance: surface differential reflectivity spectroscopy and grazing incidence small angle x-ray scattering,” Phys. Rev. B 79, 125428 (2009). [CrossRef]
  3. R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseñor, and W. L. Mochán, “Optical properties of 2D disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991). [CrossRef]
  4. T. Wenzel, J. Bosbach, F. Stietz, and F. Träger, “In situ determination of the shape of supported silver clusters during growth,” Surf. Sci. 432, 257–264 (1999). [CrossRef]
  5. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett. 25, 372–374 (2000). [CrossRef]
  6. J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008). [CrossRef]
  7. R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998). [CrossRef]
  8. A. García-Valenzuela, E. Gutiérrez-Reyes, and R. G. Barrera, “Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles,” J. Opt. Soc. Am. A 29, 1161–1179 (2012). [CrossRef]
  9. R. Diamant and M. Fernández-Guasti, “Light propagation in 1D inhomogeneous deterministic media: the effect of discontinuities,” J. Opt. A 11, 045712 (2009). [CrossRef]
  10. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, 1981).
  11. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  12. M. Mishchenko, Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications (Academic, 1999).
  13. V. Bazhan, “ScatLab,” http://www.scatlab.org .
  14. V. A. Loiko, V. P. Dick, and V. I. Molochko, “Monolayers of discrete scatterers: comparison of the single-scattering and quasi-crystalline approximations,” J. Opt. Soc. Am. A 15, 2351–2354 (1998). [CrossRef]
  15. M. C. Peña-Gomar, J. J. F. Castillo, A. García-Valenzuela, R. G. Barrera, and E. Pérez, “Coherent optical reflectance from a monolayer of large particles adsorbed on a glass surface,” Appl. Opt. 45, 626–632 (2006). [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2005).
  17. E. Hecht Eugene, Optics (Addison Wesley, 2002).
  18. M. Fernández-Guasti, A. Gil-Villegas, and R. Diamant, “Ermakov Equation Arising from Electromagnetic Fields Propagating in 1D Inhomogeneous Media,” Rev. Mex. Fís. 46, 530–538 (2000).
  19. J. L. Reid and J. R. Ray, “Ermakov systems, nonlinear superposition and solutions of nonlinear equations of motion,” J. Math. Phys. 21, 1583–1587 (1980). [CrossRef]
  20. P. B. Espinoza-Padilla, “Ermakov-Lewis dynamic invariants with some applications,” http://arxiv.org/pdf/math-ph/0002005 .
  21. N. Atzin, M. Fernandez–Guasti, and R. Diamant, “Light propagation at soft interface,” http://demonstrations.wolfram.com/LightPropagationAtSoftInterface/ .
  22. P. S. Epstein, “Reflection of waves in an inhomogeneous absorbing medium,” Proc. Natl. Acad. Sci. USA 16, 627–637 (1930). [CrossRef]
  23. A. M. Goodman, “Optical interference method for the approximate determination of refractive index and thickness of a transparent layer,” Appl. Opt. 17, 2779–2787 (1978). [CrossRef]
  24. R. Jacobsson, “Light reflection from films of continuously varying refractive index,” in Progress in Optics, Vol. V, E. Wolf, ed. (North-Holland, 1966), pp. 248–286.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited