Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantitative surface radiance mapping using multiview images of light-emitting turbid media

Not Accessible

Your library or personal account may give you access

Abstract

A novel method is presented for accurately reconstructing a spatially resolved map of diffuse light flux on a surface using images of the surface and a model of the imaging system. This is achieved by applying a model-based reconstruction algorithm with an existing forward model of light propagation through free space that accounts for the effects of perspective, focus, and imaging geometry. It is shown that flux can be mapped reliably and quantitatively accurately with very low error, <3% with modest signal-to-noise ratio. Simulation shows that the method is generalizable to the case in which mirrors are used in the system and therefore multiple views can be combined in reconstruction. Validation experiments show that physical diffuse phantom surface fluxes can also be reconstructed accurately with variability <3% for a range of object positions, variable states of focus, and different orientations. The method provides a new way of making quantitatively accurate noncontact measurements of the amount of light leaving a diffusive medium, such as a small animal containing fluorescent or bioluminescent markers, that is independent of the imaging system configuration and surface position.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative bioluminescence tomography using spectral derivative data

Hamid Dehghani, James A. Guggenheim, Shelley L. Taylor, Xiangkun Xu, and Ken Kang-Hsin Wang
Biomed. Opt. Express 9(9) 4163-4174 (2018)

Bioluminescence tomography based on the phase approximation model

W. Cong and G. Wang
J. Opt. Soc. Am. A 27(2) 174-179 (2010)

3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images

Xueli Chen, Xinbo Gao, Duofang Chen, Xiaopeng Ma, Xiaohui Zhao, Man Shen, Xiangsi Li, Xiaochao Qu, Jimin Liang, Jorge Ripoll, and Jie Tian
Opt. Express 18(19) 19876-19893 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved