OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Number of discernible object colors is a conundrum

Kenichiro Masaoka, Roy S. Berns, Mark D. Fairchild, and Farhad Moghareh Abed  »View Author Affiliations


JOSA A, Vol. 30, Issue 2, pp. 264-277 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000264


View Full Text Article

Enhanced HTML    Acrobat PDF (2955 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Widely varying estimates of the number of discernible object colors have been made by using various methods over the past 100 years. To clarify the source of the discrepancies in the previous, inconsistent estimates, the number of discernible object colors is estimated over a wide range of color temperatures and illuminance levels using several chromatic adaptation models, color spaces, and color difference limens. Efficient and accurate models are used to compute optimal-color solids and count the number of discernible colors. A comprehensive simulation reveals limitations in the ability of current color appearance models to estimate the number of discernible colors even if the color solid is smaller than the optimal-color solid. The estimates depend on the color appearance model, color space, and color difference limen used. The fundamental problem lies in the von Kries-type chromatic adaptation transforms, which have an unknown effect on the ranking of the number of discernible colors at different color temperatures.

© 2013 Optical Society of America

OCIS Codes
(120.5240) Instrumentation, measurement, and metrology : Photometry
(230.6080) Optical devices : Sources
(300.6170) Spectroscopy : Spectra
(330.1730) Vision, color, and visual optics : Colorimetry
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 15, 2012
Revised Manuscript: December 19, 2012
Manuscript Accepted: December 24, 2012
Published: January 31, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Kenichiro Masaoka, Roy S. Berns, Mark D. Fairchild, and Farhad Moghareh Abed, "Number of discernible object colors is a conundrum," J. Opt. Soc. Am. A 30, 264-277 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-30-2-264


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Morovic, P. L. Sun, and P. Morovic, “The gamuts of input and output colour imaging media,” Proc. SPIE 4300, 114–125 (2001).
  2. R. G. Kuehni, Color Space and its Divisions: Color Order from Antiquity to the Present (Wiley, 2003), pp. 202–203.
  3. E. B. Titchener, Outline of Psychology (Macmillan, 1896), p. 48.
  4. E. B. Titchener, Outline of Psychology: New Edition with Additions (Macmillan, 1899), p. 55.
  5. E. G. Boring, H. S. Langfeld, and H. P. Weld, Introduction to Psychology (Wiley, 1939), p. 517.
  6. D. B. Judd and K. L. Kelly, “Method of designating colors,” J. Res. Nat. Bur. Stand. 23, 355–366 (1939). [CrossRef]
  7. D. B. Judd and G. Wyszecki, Color in Business, Science, and Industry, 3rd ed. (Wiley, 1975).
  8. R. M. Halsey and A. Chapanis, “On the number of absolutely identifiable spectral hues,” J. Opt. Soc. Am. 41, 1057–1058(1951). [CrossRef]
  9. A. Hård and L. Sivik, “NCS–natural color system: a Swedish standard for color notation,” Color Res. Appl. 6, 129–138 (1981). [CrossRef]
  10. W. Ostwald, “Neue Forschungen zur Farbenlehre,” Phys. Z. 17, 322–332 (1916).
  11. E. Schrödinger, “Theorie der Pigmente von größter Leuchtkraft,” Ann. Phys. 367, 603–622 (1920). [CrossRef]
  12. R. Luther, “Aus dem Gebiete der Farbreiz-Metrik,” Z. Tech. Phys. 8, 540–558 (1927).
  13. N. D. Nyberg, “Zum Aufbau des Farbkörpers im Raume aller Lichtempfindungen,” Z. Phys. 52, 406–419 (1929). [CrossRef]
  14. S. Rösch, “Die Kennzeichnung der Farben,” Z. Phys. 29, 83–91 (1928).
  15. D. L. MacAdam, “The theory of maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 249–252(1935). [CrossRef]
  16. D. L. MacAdam, “Maximum visual efficiency of colored materials,” J. Opt. Soc. Am. 25, 361–367 (1935). [CrossRef]
  17. D. Nickerson and S. M. Newhall, “A psychological color solid,” J. Opt. Soc. Am. 33, 419–422 (1943). [CrossRef]
  18. M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
  19. S. Wen, “A method for selecting display primaries to match a target color gamut,” J. Soc. Inf. Disp. 15, 1015–1022 (2007). [CrossRef]
  20. F. Martínez-Verdú, E. Perales, E. Chorro, D. de Fez, V. Viqueira, and E. Gilabert, “Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source,” J. Opt. Soc. Am. A 24, 1501–1515 (2007). [CrossRef]
  21. “A colour appearance model for colour management systems: CIECAM02,” CIE 159:2004 (CIE, 2004).
  22. J. Morovic, Color Gamut Mapping, 1st ed. (Wiley, 2008), p. 161.
  23. J. Morovic, V. Cheung, and P. Morovic, “Why we don’t know how many colors there are,” in Proceedings of IS&T CGIV 2012: Sixth European Conference on Colour in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, 2012), pp. 49–53.
  24. M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R. Scrivener, and C. J. Tait, “Quantifying colour appearance. Part I. LUTCHI colour appearance data,” Color Res. Appl. 16, 166–180 (1991). [CrossRef]
  25. M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006). [CrossRef]
  26. “Control of damage to museum objects by optical radiation,” CIE 157:2004 (CIE, 2004).
  27. “Industrial colour-difference evaluation,” CIE 116:1995 (CIE, 1995).
  28. K. Masaoka, “Fast and accurate model for optimal color computation,” Opt. Lett. 35, 2031–2033 (2010). [CrossRef]
  29. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  30. “Recommended practice for tabulating spectral data for use in colour computations,” CIE 167:2005 (CIE, 2005).
  31. C. Li, M. R. Luo, M. S. Cho, and J. S. Kim, “Linear programming method for computing the gamut of object color solid,” J. Opt. Soc. Am. A 27, 985–991 (2010). [CrossRef]
  32. M. D. Fairchild, “Testing colour-appearance models: Guidelines for coordinated research,” Color Res. Appl. 20, 262–267(1995).
  33. M. D. Fairchild, Color Appearance Models, 2nd ed. (Wiley, 2005).
  34. “Colorimetry,” CIE 15.3:2004 (CIE, 2004).
  35. J. von Kries, Chromatic Adaptation, Festschrift der Albercht-Ludwig-Universität (Fribourg, 1902).
  36. P. Green, Color Management: Understanding and Using ICC Profiles, 1st ed. (Wiley, 2010).
  37. E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colors under several illuminants and light sources,” in Proceedings of IS&T CGIV 2006: Third European Conference on Colour in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, 2006), pp. 414–419.
  38. C. S. McCamy, “On the number of discernible colors,” Color Res. Appl. 23, 337 (1998).
  39. J. Morovic, Hewlett-Packard Ltd., 42 Scythe Way, Colchester, CO3 4SJ, UK (personal communication, 2012).
  40. C. Li, M. R. Luo, and G. Cui, “Colour-differences evaluation using colour appearance models,” in Proceedings of IS&T/SID CIC11: Eleventh Color Imaging Conference (Society for Imaging Science and Technology, 2003), pp. 127–131.
  41. R. S. Berns, Billmeyer and Saltzman’s Principles of Color Technology, 3rd ed. (Wiley-Interscience, 2000), pp. 68–69.
  42. S. M. Newhall, D. Nickerson, and D. B. Judd, “Final report of the O.S.A. subcommittee on the spacing of the Munsell colors,” J. Opt. Soc. Am. 33, 385–418 (1943). [CrossRef]
  43. University of Eastern Finland, Spectral Image Database, http://spectral.joensuu.fi/ .
  44. E. Perales, Department of Optics, Pharmacology and Anatomy, University of Alicante, Carretera de San Vicente del Raspeig s/n 03690, Alicante, Spain (personal communication, 2012).
  45. P. D. Pinto, J. M. Linhares, J. A. Carvalhal, and S. M. Nascimento, “Psychophysical estimation of the best illumination for appreciation of Renaissance paintings,” Vis. Neurosci. 23, 669–674 (2006). [CrossRef]
  46. P. D. Pinto, J. M. Linhares, and S. M. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630(2008). [CrossRef]
  47. O. Masuda and S. M. Nascimento, “Lighting spectrum to maximize colorfulness,” Opt. Lett. 37, 407–409 (2012). [CrossRef]
  48. J. M. Quintero, C. E. Hunt, and J. Carreras, “De-entangling colorfulness and fidelity for a complete statistical description of color quality,” Opt. Lett. 37, 4997–4999 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited