OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

In vivo measurement of skin microrelief using photometric stereo in the presence of interreflections

Ali Sohaib, Abdul R. Farooq, Gary A. Atkinson, Lyndon N. Smith, Melvyn L. Smith, and Robert Warr  »View Author Affiliations


JOSA A, Vol. 30, Issue 3, pp. 278-286 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000278


View Full Text Article

Enhanced HTML    Acrobat PDF (2081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes and describes an implementation of a photometric stereo-based technique for in vivo assessment of three-dimensional (3D) skin topography in the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients to mitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian, and African American subjects to demonstrate the accuracy of our method and to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian, and African American skin types. The results also illustrate the differences in recovered skin topography due to the nondiffuse bidirectional reflectance distribution function (BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin.

© 2013 Optical Society of America

OCIS Codes
(150.6910) Machine vision : Three-dimensional sensing
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(290.1483) Scattering : BSDF, BRDF, and BTDF

ToC Category:
Machine Vision

History
Original Manuscript: May 17, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 28, 2012
Published: February 5, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Ali Sohaib, Abdul R. Farooq, Gary A. Atkinson, Lyndon N. Smith, Melvyn L. Smith, and Robert Warr, "In vivo measurement of skin microrelief using photometric stereo in the presence of interreflections," J. Opt. Soc. Am. A 30, 278-286 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-30-3-278


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Woodham, “Photometric stereo: a reflectance map technique for determining surface orientation from image intensity,” Proc. SPIE 155, 136–143 (1978). [CrossRef]
  2. M. L. Smith and L. N. Smith, “Dynamic photometric stereo-a new technique for moving surface analysis,” Image Vis. Comput. 23, 841–852 (2005). [CrossRef]
  3. J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008). [CrossRef]
  4. A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005). [CrossRef]
  5. M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005). [CrossRef]
  6. A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999). [CrossRef]
  7. D. Forsyth and A. Zisserman, “Mutual illumination,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89 (IEEE, 1989), pp. 466–473.
  8. M. Liao, X. Huang, and R. Yang, “Interreflection removal for photometric stereo by using spectrum dependent albedo,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2011), pp. 689–696.
  9. S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991). [CrossRef]
  10. T. Yamada, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from image sequence,” in Proceedings of IAPR Workshop on Machine Vision Applications (IAPR MVA Organizing Committee, 1998), pp. 384–387.
  11. A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999). [CrossRef]
  12. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005). [CrossRef]
  13. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981). [CrossRef]
  14. T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1825–1832.
  15. M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.
  16. Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012). [CrossRef]
  17. T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.
  18. J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005). [CrossRef]
  19. M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010). [CrossRef]
  20. D. E. Barker, “Skin thickness in the human,” Plast. Reconstruct. Surg. 7, 115–116 (1951). [CrossRef]
  21. Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183–189 (2002). [CrossRef]
  22. V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007). [CrossRef]
  23. A. Krishnaswamy and G. V. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” Comput. Graph. Forum 23, 331–340 (2004). [CrossRef]
  24. J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, and A. B. Ritter, “Noninvasive light-reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999). [CrossRef]
  25. M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  26. K. J. Dana, “BRDF/BTF measurement device,” in Proceedings of International Conference on Computer Vision (IEEE, 2001), pp. 460–466.
  27. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999). [CrossRef]
  28. S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.
  29. E. Angelopoulou, “The reflectance spectrum of human skin,” Technical report (University of Pennsylvania, 1999).
  30. B. Koch, “A multispectral bidirectional reflectance distribution function study of human skin for improved dismount detection,” Master’s thesis (Air Force Institute of Technology—Graduate School of Engineering and Management, 2011).
  31. B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012). [CrossRef]
  32. C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).
  33. P. D. Burns, “Analysis of image noise in multispectral color acquisition,” Ph.D. thesis (Center for Imaging Science, Rochester Institute of Technology, 1997).
  34. M. V. Newberry, “Increasing precision and accuracy in photometric measurements,” Precision CCD Photometry, ASP Conference Series189, 74–82 (1999).
  35. J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001). [CrossRef]
  36. R. Bazin and J. L. Leveque, “Longitudinal study of skin aging: from microrelief to wrinkles,” Skin Res. Technol 17, 135–140 (2011). [CrossRef]
  37. M. Setaro and A. Sparavigna, “Irregularity skin index (ISI): a tool to evaluate skin surface texture,” Skin Res. Technol. 7, 159–163 (2001). [CrossRef]
  38. T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007). [CrossRef]
  39. P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002). [CrossRef]
  40. E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010). [CrossRef]
  41. M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011). [CrossRef]
  42. S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999). [CrossRef]
  43. P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992). [CrossRef]
  44. J. Dong and M. Chantler, “Estimating parameters of an illumination model for the synthesis of specular surface textures,” in Computer and Information Technology (IEEE Computer Society, 2004), pp. 716–721.
  45. Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited