OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Postprocessing method for reducing phase effects in reconstructed microcomputed-tomography data

Erik L. G. Wernersson, Matthieu N. Boone, Jan Van den Bulcke, Luc Van Hoorebeke, and Cris L. Luengo Hendriks  »View Author Affiliations


JOSA A, Vol. 30, Issue 3, pp. 455-461 (2013)
http://dx.doi.org/10.1364/JOSAA.30.000455


View Full Text Article

Enhanced HTML    Acrobat PDF (4440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With increased resolution in x-ray computed tomography, refraction adds increasingly to the attenuation signal. Though potentially beneficial, the artifacts caused by refraction often need to be removed from the image. In this paper, we propose a postprocessing method, based on deconvolution, that is able to remove these artifacts after conventional reconstruction. This method poses two advantages over existing projection-based (preprocessing) phase-retrieval or phase-removal algorithms. First, evaluation of the parameters can be done very quickly, improving the overall speed of the method. Second, postprocessing methods can be applied when projection data is not available, which occurs in several commercial systems with closed software or when projection data has been deleted. It is shown that the proposed method performs comparably to state-of-the-art methods in terms of image quality.

© 2013 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3190) Image processing : Inverse problems
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(110.7440) Imaging systems : X-ray imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Image Processing

History
Original Manuscript: October 3, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: January 14, 2013
Published: February 21, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Erik L. G. Wernersson, Matthieu N. Boone, Jan Van den Bulcke, Luc Van Hoorebeke, and Cris L. Luengo Hendriks, "Postprocessing method for reducing phase effects in reconstructed microcomputed-tomography data," J. Opt. Soc. Am. A 30, 455-461 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-30-3-455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995). [CrossRef]
  2. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for constant, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express 16, 3223–3241 (2008). [CrossRef]
  3. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett. 98, 108105 (2007). [CrossRef]
  4. C. David, T. Weitkamp, F. Pfeiffer, A. Diaz, J. Bruder, T. Rohbeck, A. Groso, O. Bunk, M. Stampanoni, and P. Cloetens, “Hard x-ray phase imaging and tomography using a grating interferometer,” Spectrochim. Acta Part B 62, 626–630 (2007). [CrossRef]
  5. P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. V. Landuyt, J. Guigay, and M. Schlenker, “Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75, 2912–2914 (1999). [CrossRef]
  6. M. Langer, P. Cloetens, and F. Peyrin, “Fourier-wavelet regularization of phase retrieval in x-ray in-line phase tomography,” J. Opt. Soc. Am. A 26, 1876–1881 (2009). [CrossRef]
  7. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335–338 (1996). [CrossRef]
  8. T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen’s rays: propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105, 102005 (2009). [CrossRef]
  9. C. M. Laperle, T. J. Hamilton, P. Wintermeyer, E. J. Walker, D. Shi, M. A. Anastasio, Z. Derdak, J. R. Wands, G. Diebold, and C. Rose-Petruck, “Low density contrast agents for x-ray phase contrast imaging: the use of ambient air for x-ray angiography of excised murine liver tissue,” Phys. Med. Biol. 53, 6911–6923 (2008). [CrossRef]
  10. S. Matsuo, H. Fujita, J. Morishita, T. Katafuchi, C. Honda, and J. Sugiyama, “Preliminary evaluation of a phase contrast imaging with digital mammography,” in Digital Mammography/IWDM’08 (Springer, 2008), pp. 130–136.
  11. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A 19, 472–480 (2002). [CrossRef]
  12. A. Groso, R. Abela, and M. Stampanoni, “Implementation of a fast method for high resolution phase contrast tomography,” Opt. Express 14, 8103–8110 (2006). [CrossRef]
  13. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002). [CrossRef]
  14. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011). [CrossRef]
  15. Y. De Witte, M. Boone, J. Vlassenbroeck, M. Dierick, and L. Van Hoorebeke, “The Bronnikov aided correction for x-ray computed tomography,” J. Opt. Soc. Am. A 26, 890–894 (2009). [CrossRef]
  16. M. N. Boone, W. Devulder, M. Dierick, L. Brabant, E. Pauwels, and L. V. Hoorebeke, “Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging,” J. Opt. Soc. Am. A 29, 2667–2672 (2012).
  17. M. Axelsson, S. Svensson, and G. Borgefors, “Reduction of ring artefacts in high resolution x-ray microtomography images,” in DAGM Symposium on Pattern Recognition (Springer, 2006), pp. 61–70.
  18. D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact correction methods for flat-detector CT,” Phys. Med. Biol. 54, 3881–3895 (2009). [CrossRef]
  19. P. M. Joseph and C. Ruth, “A method for simultaneous correction of spectrum hardening artifacts in CT images containing both bone and iodine,” Med. Phys. 24, 1629–1634 (1997). [CrossRef]
  20. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  21. M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. 2, 2019–2026 (1985). [CrossRef]
  22. S. C. Mayo, P. R. Miller, S. W. Wilkins, T. J. Davis, D. Gao, T. E. Gureyev, D. Paganin, D. J. Parry, A. Pogany, and A. W. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging,” J. Microsc. 207, 79–96 (2002). [CrossRef]
  23. A. Peterzol, A. Olivo, L. Rigon, S. Pani, and D. Dreossi, “The effects on the imaging system on the validity limits of the ray-optical approach to phase contrast imaging,” Med. Phys. 32, 3617–3727 (2005). [CrossRef]
  24. P. Cloetens, M. Pateyron-Salomé, J. Buffière, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997). [CrossRef]
  25. S. A. Eastwood, D. M. Paganin, and A. C. Y. Liu, “Automated phase retrieval of a single-material object using a single out-of-focus image,” Opt. Lett. 36, 1878–1880 (2011). [CrossRef]
  26. Y. De Witte, “Improved and practically feasible reconstruction methods for high resolution x-ray tomography,” Ph.D. thesis (Ghent University, 2010).
  27. J. Van den Bulcke, M. Boone, J. Van Acker, and L. Van Hoorebeke, “Three-dimensional x-ray imaging and analysis of fungi on and in wood,” Microsc. Microanal. 15, 395–402 (2009). [CrossRef]
  28. J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. Van Hoorebeke, and P. Jacobs, “Software tools for quantification of x-ray microtomography at the UGCT,” Nucl. Instrum. Methods Phys. Res. A 580, 442–445 (2007). [CrossRef]
  29. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D x-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18, 6423–6436 (2010). [CrossRef]
  30. M. A. Beltran, D. M. Paganin, K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific x-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353–7369 (2011). [CrossRef]
  31. M. N. Boone, Y. De Witte, M. Dierick, A. Almeida, and L. Van Hoorebeke, “Improved signal-to-noise ratio in laboratory-based phase contrast tomography,” Microsc. Microanal. 18, 399–405 (2012). [CrossRef]
  32. B. D. Arhatari, W. P. Gates, N. Estiaghi, and A. G. Peele, “Phase retrieval tomography in the presence of noise,” J. Appl. Phys. 107, 034904 (2010). [CrossRef]
  33. D.-J. Kroon, C. H. Slump, and T. J. J. Maal, “Optimized anisotropic rotational invariant diffusion scheme on cone-beam CT,” in 13th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2010) (2010), pp. 221–228.
  34. J. Lindblad, N. Sladoje, and T. Lukic, “De-noising of SR μ CT fiber images by total variation minimization,” in International Conference on Pattern Recognition (ICPR) 2010 (IEEE, 2010), pp. 4621–4624.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited