OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Locally countable properties and the perceptual salience of textures

Marconi S. Barbosa, Anton Bubna-Litic, and Ted Maddess  »View Author Affiliations


JOSA A, Vol. 30, Issue 8, pp. 1687-1697 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001687


View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The human ability to discriminate structured from uniformly random binary textures has been shown to exploit third- and higher-order pixel correlations. We examine this ability in an experiment using a large number of texture families that can only be distinguished on the basis of these higher-order correlations. This study investigates statistical models based on possible explanatory variables involving spatial interactions of up to four pixels. Some of these explanatory variables have been recently associated with natural images, and others are somewhat less intuitive and are used here for the first time, to our knowledge. Our models are constructed using intraclass and cross-class feature selection by means of lasso/elastic net optimization and extensive cross-validation. We focus on a special set of locally countable image measures that seem to parsimoniously capture the observed discrimination performance. Among the measures underpinning the best models, we highlight a concept that can only exist in nine-pixel or larger image patches, but nonetheless is calculable based on the multiplicity of specific four-pixel patches in a texture. We show that this single geometric concept provides significant clues to explain texture discrimination.

© 2013 Optical Society of America

OCIS Codes
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: February 25, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 27, 2013
Published: July 29, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Marconi S. Barbosa, Anton Bubna-Litic, and Ted Maddess, "Locally countable properties and the perceptual salience of textures," J. Opt. Soc. Am. A 30, 1687-1697 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-30-8-1687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Victor and M. M. Conte, “Spatial organization of nonlinear interactions in form perception,” Vis. Res. 31, 1457–1488 (1991). [CrossRef]
  2. T. Maddess and Y. Nagai, “Discriminating of isotrigon textures,” Vis. Res. 41, 3837–3860 (2001). [CrossRef]
  3. T. Maddess, Y. Nagai, J. Victor, and R. Taylor, “Multilevel isotrigon textures,” J. Opt. Soc. Am. A 24, 278–293 (2007). [CrossRef]
  4. J. D. Victor, “Complex visual textures as a tool for studying the VEP,” Vis. Res. 25, 1811–1827 (1985). [CrossRef]
  5. J. D. Victor and M. M. Conte, “Cortical interactions in texture processing: Scale and dynamics,” Vis. Neurosci. 2, 297–313 (1989). [CrossRef]
  6. L. L. Beason-Held, K. P. Purpura, J. W. Van Meter, N. P. Azari, D. J. Mangot, L. M. Optican, M. J. Mentis, G. E. Alexander, C. L. Grady, B. Horwitz, S. I. Rapoport, and M. B. Schapiro, “PET reveals occipitotemporal pathway activation during elementary form perception in humans,” Vis. Neurosci. 15, 503–510 (1998). [CrossRef]
  7. L. L. Beason-Held, K. P. Purpura, J. S. Krasuski, R. E. Desmond, D. J. Mangot, E. M. Daly, L. M. Optican, S. I. Rapoport, and J. W. VanMeter, “Striate cortex in humans demonstrates the relationship between activation and variations in visual form,” Exp. Brain Res. 130, 221–226 (2000). [CrossRef]
  8. K. P. Purpura, J. D. Victor, and E. Katz, “Striate cortex extracts higher-order spatial correlations from visual textures,” Proc. Nat. Acad. Sci. USA 91, 8482–8486 (1994). [CrossRef]
  9. M. O. Franz and B. Schölkopf, “Implicit wiener series for higher-order image analysis,” Adv. Neural Info. Process. Sys. 17, 465–472 (2005).
  10. J. D. Victor and M. M. Conte, “Local image statistics: maximum-entropy constructions and perceptual salience,” J. Opt. Soc. Am. A 29, 1313–1345 (2012). [CrossRef]
  11. C. Zetzsche and F. Rhrbein, “Nonlinear and extra-classical receptive field properties and the statistics of natural scenes,” Network 12, 331–350 (2001). [CrossRef]
  12. J. D. Victor, “Images, statistics, and textures: implications of triple correlation uniqueness for texture statistics and the julesz conjecture: comment,” J. Opt. Soc. Am. A 11, 1680–1684 (1994). [CrossRef]
  13. G. Tkačik, J. S. Prentice, J. D. Victor, and V. Balasubramanian, “Local statistics in natural scenes predict the saliency of synthetic textures,” Proc. Nat. Acad. Sci. USA 107, 18149–18154 (2010). [CrossRef]
  14. E. Schneidman, S. Still, M. J. Berry, and W. Bialek, “Network information and connected correlations,” Phys. Rev. Lett. 91, 238701 (2003). [CrossRef]
  15. M. Masi, “A step beyond tsallis and rényi entropies,” Phys. Lett. A 338, 217–224 (2005). [CrossRef]
  16. F. Nielsen and R. Nock, “A closed-form expression for the Sharma–Mittal entropy of exponential families,” J. Phys. A 45, 032003 (2012). [CrossRef]
  17. K. Michielsen and H. De Raedt, “Integral-geometry morphological image analysis,” Phys. Rep. 347, 461–538 (2001). [CrossRef]
  18. G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, F. M. Schaller, B. Breidenbach, D. Hug, and K. Mecke, “Minkowski tensors of anisotropic spatial structure,” arXiv:1009.2340, 1–17 (2010).
  19. G. E. Schröder-Turk, W. Mickel, S. C. Kapfer, M. A. Klatt, F. M. Schaller, M. J. F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, and K. Mecke, “Minkowski tensor shape analysis of cellular, granular and porous structures,” Adv. Mater. 23, 2535–2553 (2011). [CrossRef]
  20. L. Knüfing, H. Schollmeyer, H. Riegler, and K. Mecke, “Fractal analysis methods for solid alkane monolayer domains at SiO2/Air interfaces,” Langmuir 21, 992–1000 (2005). [CrossRef]
  21. R. A. Neher, K. Mecke, and H. Wagner, “Topological estimation of percolation thresholds,” J. Stat. Mechan. 2008, P01011 (2008). [CrossRef]
  22. R. Schneider and W. Weil, Stochastic and Integral Geometry (Springer, 2008).
  23. K. Michelsen, H. De Raedt, and J. De Hosson, “Aspects of mathematical morphology,” in Advances in Imaging and Electron Physics, B. K. Peter, W. Hawkes, and T. Mulvey, eds., Vol. 125 (Elsevier, 2003), pp. 119–194.
  24. W. K. Pratt, Digital Image Processing, 2nd edition (Wiley-Interscience, 1991).
  25. S. B. Gray, “Local properties of binary images in two dimensions,” IEEE Trans. Comput. C-20, 551–561 (1971). [CrossRef]
  26. T. Maddess, Y. Nagai, A. C. James, and A. Ankiewcz, “Binary and ternary textures containing higher-order spatial correlations,” Vis. Res. 44, 1093–1113 (2004). [CrossRef]
  27. J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Software 33, 1–22 (2010).
  28. R. R. L. Taylor, T. Maddess, and Y. Nagai, “Spatial biases and computational constraints on the encoding of complex local image structure,” J. Vis. 8(7):19, 1–13 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited