OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Effects of chromatic image statistics on illumination induced color differences

Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij, and Niels Dekker  »View Author Affiliations

JOSA A, Vol. 30, Issue 9, pp. 1871-1884 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure the color fidelity of visual scenes that are rendered under different (simulated) illuminants and shown on a calibrated LCD display. Observers make triad illuminant comparisons involving the renderings from two chromatic test illuminants and one achromatic reference illuminant shown simultaneously. Four chromatic test illuminants are used: two along the daylight locus (yellow and blue), and two perpendicular to it (red and green). The observers select the rendering having the best color fidelity, thereby indirectly judging which of the two test illuminants induces the smallest color differences compared to the reference. Both multicolor test scenes and natural scenes are studied. The multicolor scenes are synthesized and represent ellipsoidal distributions in CIELAB chromaticity space having the same mean chromaticity but different chromatic orientations. We show that, for those distributions, color fidelity is best when the vector of the illuminant change (pointing from neutral to chromatic) is parallel to the major axis of the scene’s chromatic distribution. For our selection of natural scenes, which generally have much broader chromatic distributions, we measure a higher color fidelity for the yellow and blue illuminants than for red and green. Scrambled versions of the natural images are also studied to exclude possible semantic effects. We quantitatively predict the average observer response (i.e., the illuminant probability) with four types of models, differing in the extent to which they incorporate information processing by the visual system. Results show different levels of performance for the models, and different levels for the multicolor scenes and the natural scenes. Overall, models based on the scene averaged color difference have the best performance. We discuss how color constancy algorithms may be improved by exploiting knowledge of the chromatic distribution of the visual scene.

© 2013 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.5510) Vision, color, and visual optics : Psychophysics
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: February 20, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: August 2, 2013
Published: August 28, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij, and Niels Dekker, "Effects of chromatic image statistics on illumination induced color differences," J. Opt. Soc. Am. A 30, 1871-1884 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  2. D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vis. 5(1), 5–35 (1990). [CrossRef]
  3. G. D. Finlayson and G. Schaefer, “Solving for colour constancy using a constrained dichromatic reflection model,” Int. J. Comput. Vis. 42, 127–144 (2001). [CrossRef]
  4. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef]
  5. D. H. Brainard and W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997). [CrossRef]
  6. B. Funt, K. Barnard, and L. Martin, “Is colour constancy good enough?” Proceedings of the 5th European Conference on Computer Vision (Springer-Verlag, 1998), pp. 445–459.
  7. S. D. Hordley and G. D. Finlayson, “Reevaluation of color constancy algorithm performance,” J. Opt. Soc. Am. A 23, 1008–1020 (2006). [CrossRef]
  8. L. Arend, A. Reeves, J. Schirillo, and R. Goldstein, “Simultaneous color constancy: patterns with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991). [CrossRef]
  9. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005). [CrossRef]
  10. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011). [CrossRef]
  11. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000). [CrossRef]
  12. M. P. Lucassen, T. Gevers, and A. Gijsenij, “Color fidelity of chromatic distributions by triad illuminant comparison,” in IEEE Image, Video, and Multidimensional Signal Processing (IVMSP) Workshop: Perception and Visual Signal Analysis (2011), pp. 1–6.
  13. “Colorimetry,” , 2nd ed. (Central Bureau of the CIE, 1986) .
  14. “Industrial Colour-Difference Evaluation,” (Central Bureau of the CIE, 1995).
  15. “Improvement to Industrial Colour-Difference Evaluation,” (Central Bureau of the CIE, 2000).
  16. X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital color image reproduction,” in Society for Information Display 96 Digest, San Diego, California, 1996, pp. 731–734.
  17. A. Toet and M. P. Lucassen, “A new universal colour image fidelity metric,” Displays 24, 197–207 (2003). [CrossRef]
  18. J. Van de Weijer, T. Gevers, and A. Gijsenij, “Edge based color constancy,” IEEE Trans. Image Process. 16, 2207–2214 (2007). [CrossRef]
  19. F. Ciurea and B. Funt, “A large image database for color constancy research,” in IS&T 11th Color Imaging Conference, Scottsdale, Arizona, 2003, pp. 160–164.
  20. C. Van Trigt, “Smoothest reflectance functions. I. Definition and main results,” J. Opt. Soc. Am. A 7, 1891–1904 (1990). [CrossRef]
  21. P. B. Delahunt and D. H. Brainard, “Does human color constancy incorporate the statistical regularity of natural daylight?” J. Vis. 4(2):1, 57–81 (2004).
  22. A. Gijsenij, T. Gevers, and M. P. Lucassen, “A perceptual analysis of distance measures for color constancy,” J. Opt. Soc. Am. A 26, 2243–2256 (2009). [CrossRef]
  23. M. P. Lucassen, P. Bijl, and J. Roelofsen, “The perception of static colored noise: detection and masking described by CIE94,” Color Res. Appl. 33, 178–191 (2008). [CrossRef]
  24. M. J. Swain and D. H. Ballard, “Color indexing,” Int. J. Comput. Vis. 7(1), 11–32 (1991). [CrossRef]
  25. Bruce Lindbloom, http://www.brucelindbloom.com .
  26. S. A. Ajagamelle, M. Pedersen, and G. Simone, “Analysis of the difference of Gaussians model in image difference metrics,” in IS&T 5th European Conference on Colour in Graphics, Imaging, and Vision, Joensuu, Finland, 2010, pp. 489–496.
  27. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). [CrossRef]
  28. D. L. Ruderman, T. W. Cronin, and C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  29. J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002). [CrossRef]
  30. R. Mausfeld and J. Andres, “Second-order statistics of colour codes modulate transformations that effectuate varying degrees of scene invariance and illumination invariance,” Perception 31, 209–224 (2002). [CrossRef]
  31. J. Golz, “The role of chromatic scene statistics in color constancy: spatial integration,” J. Vis. 8(13):6, 1–16 (2008). [CrossRef]
  32. J. J. M. Granzier, E. Brenner, and J. B. J. Smeets, “Can illumination estimates provide the basis for color constancy?” J. Vis. 9(3):18, 1–11 (2009). [CrossRef]
  33. M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vis. Res. 33, 739–757 (1993). [CrossRef]
  34. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998). [CrossRef]
  35. D. H. Brainard, P. Longère, P. B. Delahunt, W. T. Freeman, J. M. Kraft, and B. Xiao, “Bayesian model of human color constancy,” J. Vis. 6(11):10, 1267–1281 (2006). [CrossRef]
  36. T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4):2, 1–15 (2007). [CrossRef]
  37. C. Arnold, “Surface color perception under different illuminants and surface collections,” Unveröffentlichte Dissertation (Universität Regensburg, 2009).
  38. “Colour Rendering (TC 1-33 closing remarks),” (CIE Central Bureau, Vienna, 1999).
  39. M. P. Lucassen, A. Gijsenij, and T. Gevers, “Comparing objective and subjective error measures for color constancy,” in IS&T 4th European Conference on Colour in Graphics, Imaging, and Vision, Terrassa, Spain, 2008.
  40. D. H. Foster, K. Amano, and S. M. C. Nascimento, “Colour constancy from temporal cues: better matches with less variability under fast illuminant changes,” Vis. Res. 41, 285–293 (2001). [CrossRef]
  41. N. Serrano, A. Savakis, and J. Luo, “A computationally efficient approach to indoor/outdoor scene classification,” in 16th International Conference on Pattern Recognition (2002), Vol. 4, pp. 146–149.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited