OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Absorption and scattering by long and randomly oriented linear chains of spheres

Euntaek Lee and Laurent Pilon  »View Author Affiliations


JOSA A, Vol. 30, Issue 9, pp. 1892-1900 (2013)
http://dx.doi.org/10.1364/JOSAA.30.001892


View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper demonstrates that the scattering cross section per unit length of randomly oriented linear chains of optically soft spheres asymptotically converges toward those of randomly oriented and infinitely long cylinders with volume-equivalent diameter as the number of spheres increases. The critical number of spheres necessary to approximate the linear chains of spheres as infinitely long cylinders decreased rapidly as the size parameter of an individual sphere increased from 0.01 to 10. On the other hand, their absorption cross section per unit length was identical to that of an infinitely long volume-equivalent cylinder for any number of spheres. However, this approximation does not apply to the angle-dependent normalized Stokes scattering matrix element ratios.

© 2013 Optical Society of America

OCIS Codes
(290.7050) Scattering : Turbid media
(290.5825) Scattering : Scattering theory
(290.5855) Scattering : Scattering, polarization
(100.3200) Image processing : Inverse scattering

ToC Category:
Scattering

History
Original Manuscript: June 13, 2013
Revised Manuscript: August 2, 2013
Manuscript Accepted: August 2, 2013
Published: August 30, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Euntaek Lee and Laurent Pilon, "Absorption and scattering by long and randomly oriented linear chains of spheres," J. Opt. Soc. Am. A 30, 1892-1900 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-30-9-1892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kerker, The Scattering of Light, and Other Electromagnetic Radiation (Academic, 1969).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  3. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002).
  4. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic, 2007).
  5. M. I. Mishchenko and L. D. Travis, “Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths to observation,” Appl. Opt. 33, 7206–7225 (1994). [CrossRef]
  6. M. I. Mishchenko and J. W. Hovenier, “Depolarization of light backscattered by randomly oriented nonspherical particles,” Opt. Lett. 20, 1356–1358 (1995). [CrossRef]
  7. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  8. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, 2000).
  9. D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix for nonspherical particles,” J. Opt. Soc. Am. A 19, 881–893 (2002). [CrossRef]
  10. L. Bi, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders,” J. Quant. Spectrosc. Radiat. Transfer 123, 17–22 (2013). [CrossRef]
  11. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  12. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  13. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  14. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  15. P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Effect of particle asphericity on single-scattering parameters: comparison between platonic solids and spheres,” Appl. Opt. 43, 4427–4435 (2004). [CrossRef]
  16. M. I. Mishchenko and D. W. Mackowski, “Light scattering by randomly oriented bispheres,” Opt. Lett. 19, 1604–1606 (1994). [CrossRef]
  17. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994). [CrossRef]
  18. M. I. Mishchenko, D. W. Mackowski, and L. D. Travis, “Scattering of light by bispheres with touching and separated components,” Appl. Opt. 34, 4589–4599 (1995). [CrossRef]
  19. M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683–694 (1996). [CrossRef]
  20. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996). [CrossRef]
  21. D. W. Mackowski, “A simplified model to predict the effects of aggregation on the absorption properties of soot particles,” J. Quant. Spectrosc. Radiat. Transfer 100, 237–249 (2006). [CrossRef]
  22. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011). [CrossRef]
  23. L. Bi, P. Yang, G. W. Kattawar, and M. I. Mishchenko, “Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles,” J. Quant. Spectrosc. Radiat. Transfer 116, 169–183 (2013). [CrossRef]
  24. R. A. West, “Optical properties of aggregate particles whose outer diameter is comparable to the wavelength,” Appl. Opt. 30, 5316–5324 (1991). [CrossRef]
  25. M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989). [CrossRef]
  26. M. F. Iskander, H. Y. Chen, and J. E. Penner, “Resonance optical absorption by fractal agglomerates of smoke aerosols,” Atmos. Environ. A 25, 2563–2569 (1991). [CrossRef]
  27. S. Manickavasagam and M. P. Mengüç, “Scattering matrix elements of fractal-like soot agglomerates,” Appl. Opt. 36, 1337–1351 (1997). [CrossRef]
  28. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?” J. Opt. Soc. Am. A 19, 521–531 (2002). [CrossRef]
  29. L. Pilon, H. Berberoğlu, and R. Kandilian, “Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae,” J. Quant. Spectrosc. Radiat. Transfer 112, 2639–2660 (2011). [CrossRef]
  30. M. T. Madigan and J. M. Martinko, Biology of Microorganisms (Pearson Prentice Hall, 2006).
  31. L. J. Stal, “Cyanobacteria,” in Algae and Cyanobacteria in Extreme Environments, J. Seckbach, ed., Vol. 11 of Cellular Origin, Life in Extreme Habitats and Astrobiology (Springer, 2007), pp. 659–680.
  32. J. R. Benemann, “Hydrogen production by microalgae,” J. Appl. Phycol. 12, 291–300 (2000). [CrossRef]
  33. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2001).
  34. S. Manickavasagam and M. P. Mengüc, “Scattering-matrix elements of coated infinite-length cylinders,” Appl. Opt. 37, 2473–2482 (1998). [CrossRef]
  35. J. W. Hovenier and D. W. Mackowski, “Symmetry relations for forward and backward scattering by randomly oriented particles,” J. Quant. Spectrosc. Radiat. Transfer 60, 483–492 (1998). [CrossRef]
  36. L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” J. Geophys. Res. Atmos. 110, D11211 (2005). [CrossRef]
  37. S. C. Lee, “Radiative transfer through a fibrous medium: allowance for fiber orientation,” J. Quant. Spectrosc. Radiat. Transfer 36, 253–263 (1986). [CrossRef]
  38. A. C. Lind and J. M. Greenberg, “Electromagnetic scattering by obliquely oriented cylinders,” J. Appl. Phys. 37, 3195–3203 (1966). [CrossRef]
  39. T. W. Tong and C. L. Tien, “Analytical models for thermal radiation in fibrous insulations,” J. Build. Phys. 4, 27–44 (1980). [CrossRef]
  40. S. C. Lee, “Radiation heat-transfer model for fibers oriented parallel to diffuse boundaries,” J. Thermophys. Heat Transfer 2, 303–308 (1988). [CrossRef]
  41. H. A. Yousif and E. Boutros, “A FORTRAN code for the scattering of EM plane waves by an infinitely long cylinder at oblique incidence,” Comput. Phys. Commun. 69, 406–414 (1992). [CrossRef]
  42. M. F. Modest, Radiative Heat Transfer (Academic, 2003).
  43. Z.-J. Li, Z.-S. Wu, Y. Shi, L. Bai, and H.-Y. Li, “Multiple scattering of electromagnetic waves by an aggregate of uniaxial anisotropic spheres,” J. Opt. Soc. Am. A 29, 22–31 (2012). [CrossRef]
  44. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community,” Appl. Opt. 40, 2929–2945 (2001). [CrossRef]
  45. J.-F. Cornet, C. G. Dussap, J. B. Gross, C. Binois, and C. Lasseur, “A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors,” Chem. Eng. Sci. 50, 1489–1500 (1995). [CrossRef]
  46. J. F. Cornet and C. G. Dussap, “A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors,” Biotechnol. Progress 25, 424–435 (2009). [CrossRef]
  47. E. Lee, R.-L. Heng, and L. Pilon, “Spectral optical properties of selected photosynthetic microalgae producing biofuels,” J. Quant. Spectrosc. Radiat. Transfer 114, 122–135 (2013). [CrossRef]
  48. S. C. Lee, “Scattering phase function for fibrous media,” Int. J. Heat Mass Transfer 33, 2183–2190 (1990). [CrossRef]
  49. N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed. (Wiley, 1998).
  50. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, and A. V. Starosvetskiy, “Calculations of light scattering matrices for stochastic ensembles of nanosphere clusters,” J. Quant. Spectrosc. Radiat. Transfer 123, 23–29 (2013). [CrossRef]
  51. J. W. Hovenier, H. C. van de Hulst, and C. V. M. van der Mee, “Conditions for the elements of the scattering matrix,” Astron. Astrophys. 157, 301–310 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited