OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Estimating the eye aberration coefficients in resized pupils: is it better to refit or to rescale?

Salvador Bará, Eliseo Pailos, Justo Arines, Norberto López-Gil, and Larry Thibos  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 114-123 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000114


View Full Text Article

Enhanced HTML    Acrobat PDF (846 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to work in a consistent way with Zernike aberration coefficients estimated in different pupils, it is necessary to refer them to a common pupil size. Two standard approaches can be used to that end: to rescale algebraically the coefficients estimated in the original pupil or to refit them anew using the wavefront slope measurements available within the new one. These procedures are not equivalent; they are affected by different estimation errors that we address in this work. Our results for normal eye populations show that in case of reducing the pupil size it is better to rescale the original coefficients than to refit them using the measurements contained within the smaller pupil. In case of enlarging the pupil size, as it can a priori be expected, the opposite holds true. We provide explicit expressions to quantify the errors arising in both cases, including the expected error incurred when extrapolating the Zernike estimation beyond the radius where the measurements were made.

© 2013 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(030.6600) Coherence and statistical optics : Statistical optics
(220.1010) Optical design and fabrication : Aberrations (global)
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7325) Vision, color, and visual optics : Visual optics, metrology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: October 9, 2013
Manuscript Accepted: November 19, 2013
Published: December 12, 2013

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Salvador Bará, Eliseo Pailos, Justo Arines, Norberto López-Gil, and Larry Thibos, "Estimating the eye aberration coefficients in resized pupils: is it better to refit or to rescale?," J. Opt. Soc. Am. A 31, 114-123 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-31-1-114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1998), pp. 464–466, 767–772.
  2. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, VSIA Standards Taskforce Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.
  3. T. O. Salmon and C. van de Pol, “Normal-eye Zernike coefficients and root-mean-square wavefront errors,” J. Cataract Refractive Surg. 32, 2064–2074 (2006). [CrossRef]
  4. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).
  5. R. Montés-Micó, P. Hernández, V. Fernández-Sánchez, S. Bonaque, F. Lara, and N. López-Gil, “Changes of the eye optics after iris constriction,” J. Optom. 3, 212–218 (2010).
  6. L. N. Thibos, A. Bradley, and N. Lopez-Gil, “Modelling the impact of spherical aberration on accommodation,” Ophthalmic Physiolog. Opt. 33, 482–496 (2013). [CrossRef]
  7. S. Bará, E. Pailos, and J. Arines, “Signal-to-noise ratio and aberration statistics in ocular aberrometry,” Opt. Lett. 37, 2427–2429 (2012). [CrossRef]
  8. K. A. Goldberg and K. Geary, “Wave-front measurement errors from restricted concentric subdomains,” J. Opt. Soc. Am. A 18, 2146–2152 (2001). [CrossRef]
  9. J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19, 1937–1945 (2002). [CrossRef]
  10. C. E. Campbell, “Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed,” J. Opt. Soc. Am. A 20, 209–217 (2003). [CrossRef]
  11. G. M. Dai, “Scaling Zernike expansion coefficients to smaller pupil sizes: a simpler formula,” J. Opt. Soc. Am. A 23, 539–543 (2006). [CrossRef]
  12. H. Shu, L. Luo, G. Han, and J. L. Coatrieux, “General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes,” J. Opt. Soc. Am. A 23, 1960–1968 (2006). [CrossRef]
  13. S. Bará, J. Arines, J. Ares, and P. Prado, “Direct transformation of Zernike eye aberration coefficients between scaled, rotated and/or displaced pupils,” J. Opt. Soc. Am. A 23, 2061–2066 (2006). [CrossRef]
  14. A. J. Janssen and P. Dirksen, “Concise formula for the Zernike coefficients of scaled pupils,” J. Microlithogr. Microfabr. Microsyst. 5, 030501 (2006). [CrossRef]
  15. L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24, 569–577 (2007). [CrossRef]
  16. A. J. Janssen, S. van Haver, P. Dirksen, and J. J. Braat, “Zernike representation and Strehl ratio of optical systems with variable numerical aperture,” J. Mod. Opt. 55, 1127–1157 (2008). [CrossRef]
  17. J. A. Díaz, J. Fernández-Dorado, C. Pizarro, and J. Arasa, “Zernike coefficients for concentric, circular scaled pupils: an equivalent expression,” J. Mod. Opt. 56, 131–137 (2009). [CrossRef]
  18. K. Dillon, “Bilinear wavefront transformation,” J. Opt. Soc. Am. A 26, 1839–1846 (2009). [CrossRef]
  19. V. N. Mahajan, “Zernike coefficients of a scaled pupil,” Appl. Opt. 49, 5374–5377 (2010). [CrossRef]
  20. E. Tatulli, “Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures,” J. Opt. Soc. Am. A 30, 726–732 (2013). [CrossRef]
  21. J. Arines, P. Prado, S. Bará, and E. Acosta, “Equivalence of least-squares estimation of eye aberrations in linearly transformed reference frames,” Opt. Commun. 281, 2716–2721 (2008). [CrossRef]
  22. S. Bará, P. Prado, J. Arines, and J. Ares, “Estimation-induced correlations of the Zernike coefficients of the eye aberration,” Opt. Lett. 31, 2646–2648 (2006). [CrossRef]
  23. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  24. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  25. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002). [CrossRef]
  26. T. R. Candy and J. Wang, “Higher order monochromatic aberrations of the human infant eye,” J. Vis. 5(12):6, 543–545 (2005). [CrossRef]
  27. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: dependence on the mean accommodative effort,” Opt. Express 18, 2668–2681 (2010). [CrossRef]
  28. E. Pailos, A. Ommani, L. Díaz-Santana, and S. Bará, “Centroid displacement statistics of the eye aberration,” J. Opt. Soc. Am. A 27, 1818–1827 (2010). [CrossRef]
  29. J. Liang, W. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  30. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  31. R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vis. Sci. 74, 540–547 (1997). [CrossRef]
  32. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  33. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992). [CrossRef]
  34. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998). [CrossRef]
  35. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983). [CrossRef]
  36. L. Díaz-Santana, G. Walker, and S. X. Bará, “Sampling geometries for ocular aberrometry: a model for evaluation of performance,” Opt. Express 13, 8801–8818 (2005). [CrossRef]
  37. O. Soloviev and G. Vdovin, “Hartmann–Shack test with random masks for modal wavefront reconstruction,” Opt. Express 13, 9570–9584 (2005). [CrossRef]
  38. S. Bará, “Measuring eye aberrations with Hartmann–Shack wave-front sensors: should the irradiance distribution across the eye pupil be taken into account?” J. Opt. Soc. Am. A 20, 2237–2245 (2003). [CrossRef]
  39. J. Herrmann, “Cross coupling and aliasing in modal wave-front estimation,” J. Opt. Soc. Am. 71, 989–992 (1981). [CrossRef]
  40. V. I. Tatarskii, The Propagation of Waves in the Turbulent Atmosphere (Nauka, 1967), pp. 385–390 (in Russian).
  41. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  42. J. Arines, E. Pailos, P. Prado, and S. Bará, “The contribution of the fixational eye movements to the variability of the measured ocular aberration,” Ophthalmic Physiolog. Opt. 29, 281–287 (2009). [CrossRef]
  43. G. M. Dai, “Validity of scaling Zernike coefficients to a larger diameter for refractive surgery,” J. Refract. Sur. 27, 837–841 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited