OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Discrete-dipole approximation on a rectangular cuboidal point lattice: considering dynamic depolarization

Enrico Massa, Tyler Roschuk, Stefan A. Maier, and Vincenzo Giannini  »View Author Affiliations


JOSA A, Vol. 31, Issue 1, pp. 135-140 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000135


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Discrete-dipole approximation (DDA), which is used for computing scattering and absorption by particles of arbitrary geometry and material, is extended to the case of a rectangular cuboidal point lattice using an accurate, analytical expression of the polarizability of each cuboidal element at optical frequencies of up to 100 nm in size. This polarizability formulation (cuboidal lattice with depolarization or CLD) is shown to be more accurate in the computation of the extinction, scattering, and absorption cross sections when simulating dielectrics compared to other available and commonly used expressions of the polarizability. This can be used to reduce the number of dipoles N used, and therefore, the computation time while achieving the same accuracy of other formulations. The CLD formulation was applied to the Mie scattering problem and the results were compared to results from other DDA formulations, as well as to the Mie analytical solution for metal and dielectric spheres. Metal cubes were also simulated and different formulations compared.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: October 22, 2013
Revised Manuscript: November 25, 2013
Manuscript Accepted: November 27, 2013
Published: December 16, 2013

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Enrico Massa, Tyler Roschuk, Stefan A. Maier, and Vincenzo Giannini, "Discrete-dipole approximation on a rectangular cuboidal point lattice: considering dynamic depolarization," J. Opt. Soc. Am. A 31, 135-140 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-31-1-135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  2. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  3. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  4. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007). [CrossRef]
  5. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991). [CrossRef]
  6. C. Smith, A. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989). [CrossRef]
  7. M. A. Yurkin, “Computational approaches for plasmonics,” in Handbook of Molecular Plasmonics, F. Della Sala and S. D’Agostino, eds. (Pan Stanford, 2013), pp. 83–135.
  8. B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993). [CrossRef]
  9. N. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: a spectral approach,” IEEE Trans. Antennas Propag. 46, 1126–1137 (1998). [CrossRef]
  10. P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004). [CrossRef]
  11. M. A. Yurkin and A. G. Hoekstra, “User manual for the discrete dipole approximation code ADDA 1.2,” 2013, http://a-dda.googlecode.com/svn/tags/rel_1.2/doc/manual.pdf .
  12. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  13. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011). [CrossRef]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  15. V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009). [CrossRef]
  16. V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010). [CrossRef]
  17. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” arXiv astro-ph/0403082 (2004).
  18. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009). [CrossRef]
  19. H.-Y. Xie, M.-Y. Ng, and Y.-C. Chang, “Analytical solutions to light scattering by plasmonic nanoparticles with nearly spherical shape and nonlocal effect,” J. Opt. Soc. Am. A 27, 2411–2422 (2010). [CrossRef]
  20. M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013). [CrossRef]
  21. R. A. de la Osa, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Extended discrete dipole approximation and its application to bianisotropic media,” Opt. Express 18, 23865–23871 (2010). [CrossRef]
  22. D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magneto-optical scattering calculations,” Opt. Express 14, 5746–5754 (2006). [CrossRef]
  23. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998). [CrossRef]
  24. A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980). [CrossRef]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  26. E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013). [CrossRef]
  27. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011). [CrossRef]
  28. M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010). [CrossRef]
  29. R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732–1740 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited