OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Crystalline lens thickness determines the perceived chromatic difference in magnification

Yun Chen and Frank Schaeffel  »View Author Affiliations


JOSA A, Vol. 31, Issue 3, pp. 524-531 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000524


View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Since the origin of the high interindividual variability of the chromatic difference in retinal image magnification (CDM) in the human eye is not well understood, optical parameters that might determine its magnitude were studied in 21 healthy subjects with ages ranging from 21 to 58 years. Two psychophysical procedures were used to quantify CDM. They produced highly correlated results. First, a red and a blue square, presented on a black screen, had to be matched in size by the subjects with their right eyes. Second, a filled red and blue square, flickering on top of each other at 2 Hz, had to be adjusted in perceived brightness and then in size to minimize the impression of flicker. CDM varied widely among subjects from 0.0% to 3.6%. Biometric ocular parameters were measured with low coherence interferometry and crystalline lens tilt and decentration with a custom-built Purkinjemeter. Correlations were studied between CDM and corneal power, anterior chamber depth, lens thickness, lens tilt and lens decentration, and vitreous chamber depths. Lens thickness was found significantly correlated with CDM and accounted for 64% of its variance. Vertical lens tilt and decentration were also significantly correlated. It was also found that CDM increased by 3.5% per year, and part of this change can be attributed to the age-related increase in lens thickness.

© 2014 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.5370) Vision, color, and visual optics : Physiological optics
(330.4595) Vision, color, and visual optics : Optical effects on vision

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: October 21, 2013
Manuscript Accepted: December 19, 2013
Published: February 13, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Yun Chen and Frank Schaeffel, "Crystalline lens thickness determines the perceived chromatic difference in magnification," J. Opt. Soc. Am. A 31, 524-531 (2014)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-31-3-524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005). [CrossRef]
  2. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995). [CrossRef]
  3. A. van Meeteren and C. J. Dunnewold, “Image quality of the human eye for eccentric entrance pupils,” Vis. Res. 23, 573–579 (1983). [CrossRef]
  4. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998). [CrossRef]
  5. B. Howland and H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976). [CrossRef]
  6. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999). [CrossRef]
  7. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001). [CrossRef]
  8. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987). [CrossRef]
  9. P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vis. Res. 30, 187–206 (1990). [CrossRef]
  10. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990). [CrossRef]
  11. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992). [CrossRef]
  12. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957). [CrossRef]
  13. A. Ivanoff, Les aberrations de l’œil (Éditions de la Revue d’optique théorique et instrumentale, 1953).
  14. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997). [CrossRef]
  15. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987). [CrossRef]
  16. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947). [CrossRef]
  17. X. X. Zhang, L. N. Thibos, and A. Bradley, “Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vis. Sci. 68, 456–458 (1991).
  18. X. Zhang, A. Bradley, and L. N. Thibos, “Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point,” J. Opt. Soc. Am. A 10, 213–220 (1993). [CrossRef]
  19. F. W. Campbell, J. Nachmias, and J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1970).
  20. F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008). [CrossRef]
  21. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002). [CrossRef]
  22. H. Littmann, “Grundlegende Betrachtungen zur Ophthalmometrie,” Albrecht v. Graefes Arch. Ophthalmol. 151, 249–274 (1951).
  23. F. Schaeffel and H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5, 2080–2086 (1988). [CrossRef]
  24. H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc. Lond. 232, 519–671 (1947).
  25. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013). [CrossRef]
  26. J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).
  27. K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008). [CrossRef]
  28. R. Navarro, F. Palos, and L. Gonzalez, “Adaptive model of the gradient index of the human lens. I. formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24, 2175–2185 (2007). [CrossRef]
  29. L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).
  30. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001). [CrossRef]
  31. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).
  32. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008). [CrossRef]
  33. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011). [CrossRef]
  34. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002). [CrossRef]
  35. B. Jaeken, L. Lundstrom, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011). [CrossRef]
  36. A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics, 2nd ed. (Butterworths, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited