OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Multimode interferometric sensors on silicon optimized for fully integrated complementary-metal-oxide-semiconductor chemical–biological sensor systems

Jeffrey J. Lillie, Mikkel A. Thomas, Nan-Marie Jokerst, Stephen E. Ralph, Karla A. Dennis, and Clifford L. Henderson  »View Author Affiliations

JOSA B, Vol. 23, Issue 4, pp. 642-651 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an integrated evanescent-field multimode Mach–Zehnder interferometric chemical–biological sensor, fabricated on silicon, with sensitivity of parts per 10 9 achieved by modal pattern tracking and analysis. This sensor is fully compatible with the fabrication constraints of the silicon–complementary-metal-oxide-semiconductor (Si-CMOS) process. Furthermore, using the separately measured ellipsometric response together with the mass uptake of agent by the polymer sensing layer, we validate sensor performance via simulation and measure an absolute index sensitivity of 2.5 × 10 6 . We then extend this to a fully integrated chemical–biological sensor by considering the fundamental noise performance of CMOS detectors. We find that relatively short, < 5000 μ m long, interferometric sensing elements, with modal pattern analysis, allow fully integrated optical sensors on Si-CMOS (assuming a 2.8 μ m pixel pitch) with an index sensitivity of 9.2 × 10 7 and a corresponding concentration sensitivity of 170 parts per 10 9 for methanol in N 2 .

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

Original Manuscript: February 28, 2005
Revised Manuscript: July 29, 2005
Manuscript Accepted: September 28, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Jeffrey J. Lillie, Mikkel A. Thomas, Nan-Marie Jokerst, Stephen E. Ralph, Karla A. Dennis, and Clifford L. Henderson, "Multimode interferometric sensors on silicon optimized for fully integrated complementary-metal-oxide-semiconductor chemical-biological sensor systems," J. Opt. Soc. Am. B 23, 642-651 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Challener, J. Edwards, R. McGowan, J. Skorjanec, and Z. Yang, "A multilayer grating-based evanescent wave sensing technique," Sens. Actuators B 71, 42-46 (2000). [CrossRef]
  2. J. Dostalek, J. Styroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8-12 (2001). [CrossRef]
  3. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluourescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001). [CrossRef]
  4. E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003). [CrossRef]
  5. N. F. Hartman, "Integrated optic interferometric sensor," U. S. patent 5623561 (April 22, 1997).
  6. R. Horvath, H. Pederson, N. Skivesen, D. Selmeczi, and N. Larsen, "Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing," Appl. Phys. Lett. 86, 071101 (2005). [CrossRef]
  7. D. Kim, M. Thomas, M. Brooke, and N. Jokerst, "Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input," in Semiconductor Photodetectors, K. Linden and E. Dereniak, eds., Proc. SPIE , 5353, 20-28 (2004). [CrossRef]
  8. H. Kuo, S. Gho, J. Hall, and N. Jokerst, "Heterogeneous integration of InP/InGaAsP MQW thin film edge emitting lasers and polymer waveguides," in 2004 Proceedings, 54th Electronic Components and Technology Conference, Part 2 (IEEE, 2004), Vol. 2, pp. 1537-1541.
  9. J. Lillie, K. Dennis, C. Henderson, and S. Ralph, of Georgia Institute of Technology, 777 Atlantic Drive N.W., Atlanta, Ga. 30332-0250, are preparing a manuscript to be called "Polymers as 'sensing layers' for evanescent wave sensors."
  10. C. R. Pollock, Fundamentals of Optoelectronics, 1st ed. (Irwin, 1995).
  11. J. Chilwell and I. Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984). [CrossRef]
  12. A. Chambers, D. Stephens, J. Pink, K. Robb, T. Thomas, E. Hinds, and R. Gunn, "Improved deposition rates and uniformity of silica-based films deposited by PECVD on 200 mm substrates," Adv. Electroni. Manuf. Technol. (www.vertilog.com) 1, 1-4 (2004).
  13. M. Thomas, J. Lillie, D. Kim, S. Ralph, M. Brooke, K. Dennis, B. Comeau, C. Henderson, and N. Jokerst, "An interferometric sensor for integration with Si CMOS circuitry, 'Sensor-on-a-Chip'," in Conference on Lasers and Electro-optics/International Quantum Electronics Conference and PhAST Technical Digest on CD-ROM, TuG6 (The Optical Society of America, Washington D.C., 2004). [PubMed]
  14. MOSIS website, "Description of AMIS processes," http://www.mosis.org/products/fab/vendors/amis/ (2005).
  15. B. Johs, J. Hale, N. Ianno, C. Herzinger, T. Tiwald, and J. Woollam, "Recent developments in spectroscopic ellipsometry for in situ applications," in Optical metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre and B. Singh, eds., Proc. SPIE 4449, 41-57 (2001). [CrossRef]
  16. D. Yevick, "A guide to electric field propagation techniques for guided wave optics," Opt. Quantum Electron. 26, 185-197 (1994). [CrossRef]
  17. A. Drozdov, "A model for mechanically induced densification of glassy polymers," J. Appl. Mech. 66, 702-708 (1999). [CrossRef]
  18. D. Brennan, "Linear diversity combining techniques," Proc. IEEE 91, 331-356 (2003). [CrossRef]
  19. B. Schneider, J. Edwards, and N. Hartman, "Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens," Clin. Chem. 43, 1757-1763 (1997). [PubMed]
  20. B. Luff, J. Wilkinson, J. Piehler, U. Hollenach, J. Ingenhoff, and N. Fabricius, "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol. 16, 583-591 (1998). [CrossRef]
  21. A. Brandenburg, R. Krauter, C. Kunzel, M. Stefan, and H. Schulte, "Interferometric sensor for detection of surface-bound bioreactions," Appl. Opt. 39, 6396-6405 (2000). [CrossRef]
  22. K. Lau and A. Yariv, "Ultra-high speed semiconductor lasers," IEEE J. Quantum Electron. 21, 121-138 (1985). [CrossRef]
  23. P. Magnan, "Detection of visible photons in CCD and CMOS: a comparative view," Nucl. Instrum. Methods Phys. Res. A 504, 199-212 (2003). [CrossRef]
  24. Hamamatsu, "CMOS linear image sensor s9226," Technical Application Note KMPD1073E04 (2004).
  25. Micron Technology, Inc., "2-megapixel low-power, CMOS image sensor," http://www.micron.com/products/imaging/products/MT9D011.html (2005).
  26. K. Dennis, "Separation of mass uptake using two polar polymers for selective chemical detection," M.S. thesis (Georgia Institute of Technology, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited