OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses

Bingwei Xu, Jess M. Gunn, Johanna M.Dela Cruz, Vadim V. Lozovoy, and Marcos Dantus  »View Author Affiliations


JOSA B, Vol. 23, Issue 4, pp. 750-759 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000750


View Full Text Article

Enhanced HTML    Acrobat PDF (793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond pulse characterization and compensation using multiphoton intrapulse interference phase scan (MIIPS) [ Opt. Lett. 29, 775 (2004) ] was rigorously tested. MIIPS was found to have 3 mrad precision within the 90 nm bandwidth of the pulses. Group-velocity dispersion measurements of glass and quartz provided independent accuracy tests. Phase distortions from high-numerical-aperture objectives were measured and corrected using MIIPS, an important requirement for reproducible two-photon microscopy. Phase compensation greatly improved the pulse-shaping results through a more accurate delivery of continuous and binary phase functions to the sample. MIIPS measurements were possible through the scattering of biological tissue, a consideration for biomedical imaging.

© 2006 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 6, 2005
Revised Manuscript: August 12, 2005
Manuscript Accepted: August 17, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Bingwei Xu, Jess M. Gunn, Johanna M. Dela Cruz, Vadim V. Lozovoy, and Marcos Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-23-4-750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004). [CrossRef] [PubMed]
  2. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004). [CrossRef]
  3. R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses--frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101-1111 (1993). [CrossRef]
  4. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11, 2206-2215 (1994). [CrossRef]
  5. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997). [CrossRef]
  6. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998). [CrossRef]
  7. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, "Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314-1316 (1999). [CrossRef]
  8. C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J. P. Rousseau, P. Rousseau, and J. P. Chambaret, "Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1644-1646 (1999). [CrossRef]
  9. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  10. A. M. Weiner, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator," IEEE J. Quantum Electron. 28, 908-920 (1992). [CrossRef]
  11. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998). [CrossRef] [PubMed]
  12. R. J. Levis, G. M. Menkir, and H. Rabitz, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001). [CrossRef] [PubMed]
  13. C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, "Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy," J. Biomed. Opt. 4, 362-367 (1999). [CrossRef]
  14. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes," Phys. Rev. A 65, 043408 (2002). [CrossRef]
  15. A. Neogi, H. Yoshida, T. Mozume, and O. Wada, "Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well," Opt. Commun. 159, 225-229 (1999). [CrossRef]
  16. J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, "Information storage and retrieval through quantum phase," Science 287, 463-465 (2000). [CrossRef] [PubMed]
  17. V. V. Lozovoy and M. Dantus, "Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation," Chem. Phys. Lett. 351, 213-221 (2002). [CrossRef]
  18. Y. Yasuno, M. Nakama, Y. Sutoh, M. Itoh, M. Mori, and T. Yatagai, "Optical coherence tomography by spectral interferometric joint transform correlator," Opt. Commun. 186, 51-56 (2000). [CrossRef]
  19. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, "Femtosecond pulse shaping by an evolutionary algorithm with feedback," Appl. Phys. B 65, 779-782 (1997). [CrossRef]
  20. D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," J. Opt. Soc. Am. B 15, 1615-1619 (1998). [CrossRef]
  21. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, "Adaptive control of pulse phase in a chirped-pulse amplifier," Opt. Lett. 23, 1915-1917 (1998). [CrossRef]
  22. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999). [CrossRef]
  23. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, "Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping," Appl. Phys. B 70, S125-S131 (2000). [CrossRef]
  24. M. R. Armstrong, P. Plachta, E. A. Ponomarev, and R. J. D. Miller, "Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics," Opt. Lett. 26, 1152-1154 (2001). [CrossRef]
  25. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002). [CrossRef]
  26. F. L. Legare, J. M. Fraser, D. M. Villeneuve, and P. B. Corkum, "Adaptive compression of intense 250-nm-bandwidth laser pulses," Appl. Phys. B 74, S279-S282 (2002). [CrossRef]
  27. U. Siegner, M. Haiml, J. Kunde, and U. Keller, "Adaptive pulse compression by two-photon absorption in semiconductors," Opt. Lett. 27, 315-317 (2002). [CrossRef]
  28. A. Monmayrant, M. Joffre, T. Oksenhendler, R. Herzog, D. Kaplan, and P. Tournois, "Time-domain interferometry for direct electric-field reconstruction by use of an acousto-optic programmable filter and a two-photon detector," Opt. Lett. 28, 278-280 (2003). [CrossRef] [PubMed]
  29. B. Broers, H. B. V. Vandenheuvell, and L. D. Noordam, "Large interference effects of small chirp observed in 2-photon absorption," Opt. Commun. 91, 57-61 (1992). [CrossRef]
  30. K. A. Walowicz, I. Pastrik, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002). [CrossRef]
  31. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003). [CrossRef]
  32. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, "Frequency doubling of phase-modulated, ultrashort laser pulses," Appl. Phys. B 73, 273-277 (2001). [CrossRef]
  33. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003). [CrossRef] [PubMed]
  34. J. M. Dela Cruz, I. Pastirk, M. Comstock, and M. Dantus, "Multiphoton intrapulse interference. 8. Coherent control through scattering tissue," Opt. Express 12, 4144-4149 (2004). [CrossRef]
  35. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. U.S.A. 101, 16996-17001 (2005). [CrossRef]
  36. I. Pastirk, M. Kangas, and M. Dantus, "Multidimensional analytical method based on binary phase shaping of femtosecond pulses," J. Phys. Chem. A 109, 2413-2416(2005). [CrossRef]
  37. J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative mass spectrometric identification of isomers applying coherent laser control," J. Phys. Chem. A 109, 8447-8450 (2005). [CrossRef]
  38. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating," Opt. Lett. 23, 1474-1476 (1998). [CrossRef]
  39. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, "Second-harmonic generation frequency-resolved optical gating in the single-cycle regime," IEEE J. Quantum Electron. 35, 459-478 (1999). [CrossRef]
  40. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, "Techniques for the characterization of sub-10-fs optical pulses: a comparison," Appl. Phys. B 70, (Suppl.) S67-S75 (2000). [CrossRef]
  41. S. Diddams and J. C. Diels, "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996). [CrossRef]
  42. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]
  43. Ohara Corp., "Optical glass catalog data," retrieved May 2, 2005, http://www.oharacorp.com/swf/catalog.html.
  44. J. Jasapara and W. Rudolph, "Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives," Opt. Lett. 24, 777-779 (1999). [CrossRef]
  45. I. Amat-Roldan, I. G. Cormack, P. Loza-Alvarez, and D. Artigas, "Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens," Opt. Lett. 29, 2282-2284 (2004). [CrossRef] [PubMed]
  46. D. N. Fittinghoff, A. C. Millard, J. A. Squier, and M. Muller, "Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective," IEEE J. Quantum Electron. 35, 479-486 (1999). [CrossRef]
  47. M. Muller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998). [CrossRef] [PubMed]
  48. D. N. Fittinghoff, J. A. Squier, C. P. J. Barty, J. N. Sweetser, R. Trebino, and M. Muller, "Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives," Opt. Lett. 23, 1046-1048 (1998). [CrossRef]
  49. V. V. Lozovoy and M. Dantus, "Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses," Chem. Phys. Chem. 65, 1952-1967 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited