OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin

G. Omar Clay, Andrew C. Millard, Chris B. Schaffer, Juerg Aus-der-Au, Philbert S. Tsai, Jeffrey A. Squier, and David Kleinfeld  »View Author Affiliations


JOSA B, Vol. 23, Issue 5, pp. 932-950 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000932


View Full Text Article

Enhanced HTML    Acrobat PDF (1714 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on third-harmonic generation (THG) of biomolecular solutions at the fluid/glass interface as a means to probe resonant contributions to their nonlinear absorption spectra that could serve as contrast mechanisms for functional imaging. Our source was 100 fs laser pulses whose center wavelength varied from 760 to 1000 nm . We find evidence of a two-photon resonance in the ratio of third-order susceptibilities, χ sample ( 3 ) ( 3 ω ) χ glass ( 3 ) , for aqueous solutions of Rhodamine B, Fura-2, and hemoglobin and a three-photon resonance in χ sample ( 3 ) ( 3 ω ) χ glass ( 3 ) for solutions of bovine serum albumin. Consistent with past work, we find evidence of a one-photon resonance of χ sample ( 3 ) ( 3 ω ) χ glass ( 3 ) for water, while confirming a lack of resonant enhancement for benzene. At physiological concentrations, hemoglobin in different ligand-binding states could be distinguished on the basis of features of its THG spectrum.

© 2006 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4180) Nonlinear optics : Multiphoton processes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(300.6420) Spectroscopy : Spectroscopy, nonlinear

ToC Category:
Spectroscopy

History
Original Manuscript: September 2, 2005
Revised Manuscript: November 17, 2005
Manuscript Accepted: November 18, 2005

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
G. Omar Clay, Andrew C. Millard, Chris B. Schaffer, Juerg Aus-der-Au, Philbert S. Tsai, Jeffrey A. Squier, and David Kleinfeld, "Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin," J. Opt. Soc. Am. B 23, 932-950 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-23-5-932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef]
  2. W. Denk, "Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions," Proc. Natl. Acad. Sci. U.S.A. 91, 6629-6633 (1994).
  3. W. Denk and K. Svoboda, "Photon upmanship: why multiphoton imaging is more than a gimmick," Neuron 18, 351-357 (1997). [CrossRef]
  4. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
  5. P. J. Campanola, D. W. Young, A. E. Cowan, C. Roychoudhuri, and L. M. Loew, "Applications in nonlinear optical microscopy," Commun. Dis. Public Health 4, 191-192 (1997).
  6. D. L. Wokosin, V. E. Centonze, S. Crittenden, and J. White, "Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser," Bioimaging 4, 1-7 (1996).
  7. I. Graczynski, H. Malak, and J. R. Lakowicz, "Multi-photon excitation of DNA stains DAPI and Hoechst," Bioimaging 4, 138-148 (1996).
  8. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznyski, and J. R. Lakowicz, "Three-photon excitation in fluorescence microscopy," J. Biomed. Opt. 1, 71-74 (1996).
  9. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, "Measuring serotonin distribution in live cells with three-photon excitation," Science 275, 530-532 (1997). [CrossRef]
  10. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," Appl. Phys. Lett. 70, 922-924 (1997). [CrossRef]
  11. J. Squier, M. Muller, G. J. Brakenhoff, and K. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-321 (1998).
  12. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, "Depth-resolved structural imaging by third-harmonic generation microscopy," J. Struct. Biol. 147, 3-11 (2004). [CrossRef]
  13. D. Yelin and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Opt. Express 5, 169-175 (1999).
  14. D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, "Third-harmonic microscopy with a titanium-sapphire laser," Appl. Phys. B 74, 97-101 (2002).
  15. J. M. Schins, T. Schrama, J. Squier, G. J. Brakenhoff, and M. Müller, "Determination of material properties by use of third-harmonic generation microscopy," J. Opt. Soc. Am. B 19, 1627-1634 (2002).
  16. T. Y. F. Tsang, "Optical third-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995). [CrossRef]
  17. J. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, 1984).
  18. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003).
  19. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D-microscopy of transparent objects using third harmonic generation," J. Microsc. 191, 266-274 (1998). [CrossRef]
  20. V. Barzda, C. Greenhalgh, J. Aus der Au, J. Squier, S. Elmore, J. H. G. M. van Beek, "Second- and third-harmonic generation and multiphoton excitation fluorescence microscopy from simultaneous imaging of cardiomyocytes," in Commerical and Biomedical Applications of Ultrafast Lasers IV, J. Neev, C. B. Schaffer, and A. Ostendorf, eds., Proc. SPIE5340, 96-103 (2004).
  21. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. Wilson, J. Squier, and M. Muller, "Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source," Appl. Opt. 38, 7393-7397 (1999).
  22. R. D. Schaller, J. C. Johnson, and R. J. Saykally, "Nonlinear chemical imaging microscopy: near-field third harmonic generation imaging of human blood cells," Anal. Chem. 72, 5361-5364 (2000). [CrossRef]
  23. D. Debarre, W. Supatto, E. Farge, B. Moulia, M. C. Schanne-Klein, and E. Beaurepaire, "Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos," Opt. Lett. 29, 2881-2883 (2004). [CrossRef]
  24. S. Y. Chen, A. Maksimichuk, E. Esarey, and D. Umstadter, "Observation of phase-matched relativistic harmonic generation," Phys. Rev. Lett. 84, 5528-5531 (2000). [CrossRef]
  25. A. N. Naumov, D. A. Sidorov-Biryukov, A. B. Fedotov, and A. M. Zheltikov, "Third-harmonic generation in focused beams as a method of 3D microscopy of a laser-produced plasma," Opt. Spectrosc. 90, 778-783 (2001). [CrossRef]
  26. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, "Studies of C(2)/C(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy," Biophys. J. 86, 3914-3922 (2004).
  27. C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, "Multiharmonic-generation biopsy of skin," Opt. Lett. 28, 2488-2490 (2003).
  28. D. A. Akimov, A. A. Ivanov, M. V. Alfimov, E. P. Grabchak, A. A. Shtykova, A. N. Petrov, A. A. Podshivalov, and A. M. Zheltikov, "J-aggregation visualized with two-photon resonant third-harmonic generation," J. Raman Spectrosc. 34, 1007-1012 (2003). [CrossRef]
  29. T. Hasegawa, K. Ishikawa, T. Kanetake, T. Koda, K. Takeda, H. Kobayashi, and K. Kubodera, "Excitonic resonant effect in the third-order nonlinear optical properties of blue- and red-form polydiacetylene films," Chem. Phys. Lett. 171, 239-244 (1990).
  30. R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, "Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy," J. Phys. Chem. B 106, 5143-5154 (2002). [CrossRef]
  31. L. Canioni, S. Rivet, L. Sarger, R. Barille, P. Vacher, and P. Voisin, "Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope," Opt. Lett. 26, 515-517 (2001).
  32. R. H. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5, 1-68 (1977). [CrossRef]
  33. R. L. Swofford and A. C. Albrecht, "Nonlinear spectroscopy," Annu. Rev. Phys. Chem. 29, 421-440 (1978).
  34. T. Hasegawa, Y. Iwasa, H. Kishida, T. Koda, Y. Tokura, H. Tachibana, and Y. Kawabata, "Two-photon resonant third-harmonic generation in polysilanes," Phys. Rev. B 45, 6317-6320 (1992). [CrossRef]
  35. M. A. Diaz-Garcia, F. Agullo-Lopez, W. E. Torruellas, and G. I. Stegeman, "Identification of two-photon states in phthalocyanines by third harmonic generation spectroscopy," Chem. Phys. Lett. 235, 535-540 (1995). [CrossRef]
  36. P. R. Callis, "Two-photon induced fluorescence," Annu. Rev. Phys. Chem. 48, 271-297 (1997). [CrossRef]
  37. A. Schulzgen, Y. Kawabe, E. Hanamura, A. Yamanaka, P. A. Blanche, J. Lee, H. Sato, M. Naito, N. T. Dan, S. Uchida, Y. Tanabe, and N. Peyghambarian, "Two-photon resonant third-harmonic generation in La2CuO4," Phys. Rev. Lett. 86, 3164-3167 (2001). [CrossRef]
  38. A. B. Schumacher, J. S. Dodge, M. A. Carnahan, R. A. Kaindl, D. S. Chemla, and L. L. Miller, "Parity-forbidden excitation of Si2CuO2Cl2 revealed by optical third-harmonic spectroscopy," Phys. Rev. Lett. 87, 1-4 (2001). [CrossRef]
  39. P. D. Maker and R. W. Terhune, "Study of optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801-A818 (1965). [CrossRef]
  40. J. Jerphagnon and S. K. Kurtz, "Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals," J. Appl. Phys. 41, 1667-1681 (1970). [CrossRef]
  41. H. Tajalli, J. P. Jiang, J. T. Murray, N. R. Armstrong, A. Schmidt, M. Chandross, S. Maxumdar, and N. Peyghambarian, "Spectra of third-order optical nonlinear susceptibilities of epitaxial chloro-indium-phthalocyanines," Appl. Phys. Lett. 67, 1639-1641 (1995). [CrossRef]
  42. R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, and P. Gunter, "Structure-property relationships in third-order nonlinear optical chromophores," J. Phys. Chem. B 102, 4451-4465 (1998). [CrossRef]
  43. S. O. Konorov, D. A. Akimov, A. A. Ivanov, M. V. Alfimov, S. Botti, R. Ciardi, L. D. Deominicis, L. S. Asilyan, A. A. Podshivalov, D. A. Sidorov-Biryukov, R. Fantoni, and A. M. Zheltikov, "Femtosecond optical harmonic generation as a non-linear spectroscopic probe for carbon nanotubes," J. Raman Spectrosc. 34, 1018-1024 (2003). [CrossRef]
  44. W. E. Torruellas, D. Neher, R. Zanoni, G. I. Stegeman, F. Kajzar, and M. Leclerc, "Dispersion measurements of the third-order nonlinear susceptiblity of polythiophene thin films," Chem. Phys. Lett. 175, 11-16 (1990). [CrossRef]
  45. J. C. Baumert, G. C. Bjorklund, D. H. Jundt, M. C. Jurich, H. Looser, R. D. Miller, J. Rabolt, R. Sooriyakumaran, J. D. Swalen, and R. J. Twieg, "Temperature dependence of the third-order nonlinear optical susceptibilities in polysilanes and polygermanes," Appl. Phys. Lett. 53, 1147-1149 (1988). [CrossRef]
  46. C. Halvorson, R. Wu, D. Moses, F. Wudl, and A. J. Heeger, "Third harmonic generation spectra of degenerate ground state derivatives of poly(1,6-heptadiyne)," Chem. Phys. Lett. 212, 85-89 (1993). [CrossRef]
  47. J. McElvain, M. Cha, H. Yu, N. Zhang, F. Wudl, and A. J. Heeger, "Third harmonic generation spectrum of a degenerate ground state conjugated polymer. Direct evidence of simultaneous two- and three-photon resonance," Chem. Phys. Lett. 247, 221-226 (1995).
  48. H. S. Nalwa, M. Hanack, G. Pawlowski, and M. K. Engel, "Third-order nonlinear optical properties of porphyrazine phthalocyanine and naphthalocyanine germanium derivities: demonstrating the effect of pi-conjugation length on third-order optical nonlinearity of two-dimensional molecules," Chem. Phys. 245, 17-26 (1999). [CrossRef]
  49. S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, "Relation between bond-length alternation and second electronic hyperpolarizability of conjugated molecules," Science 261, 186-189 (1993).
  50. J. Y. Huang and M. H. Wu, "Nonlinear optical studies of binary mixtures of hydrogen bonded liquids," Phys. Rev. E 50, 3737-3746 (1994). [CrossRef]
  51. I. Ledoux, I. D. W. Samuel, J. Zyss, S. N. Yaliraki, F. J. Schattenmann, R. R. Schrock, and R. J. Silbey, "Third-order microscopic nonlinearities of very long chain polyenes: saturation phenomena and conformational effects," Chem. Phys. 245, 1-16 (1999). [CrossRef]
  52. R. Barille, L. Canioni, S. Rivet, L. Sarger, and G. Rivoire, "Nonlinearity measurements of thin films by third-harmonic-generation microscopy," Phys. Rev. E 66, 067062, 1-4 (2002).
  53. G. R. Meredith, B. Buchalter, and C. Hanzlik, "Third-order optical susceptibility determination by third harmonic generation. 2," J. Phys. Chem. 78, 1543-1551 (1983).
  54. V. Shcheslavskiy, G. Petrov, and V. V. Yakovlev, "Nonlinear optical susceptibility measurements of solutions using third-harmonic generation on the interface," Appl. Phys. Lett. 82, 3982-3984 (2003). [CrossRef]
  55. T. Tsang, "Third- and fifth-harmonic generation at the interfaces of glass and liquids," Phys. Rev. A 54, 5454-5457 (1996). [CrossRef]
  56. P. Lemberg and J. W. Legge, Hematin Compounds and Bile Pigments (Interscience, 1949).
  57. R. B. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  58. E. J. Sanchez, L. Novotny, G. R. Holtom, and X. S. Xie, "Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation," J. Phys. Chem. A 101, 7019-7023 (1997). [CrossRef]
  59. C. Bosshard, U. Gubler, P. Kaatz, W. Mazerant, and U. Meier, "Non-phase-matched optical third-harmonic generation in noncentrosymmetric media: cascaded second-order contributions for the calibration of third-order nonlinearities," Phys. Rev. B 61, 10688-10701 (2000). [CrossRef]
  60. C. Wang, "Empirical relation between the linear and the third-order nonlinear optical susceptibilities," Phys. Rev. B 2, 2045-2048 (1970). [CrossRef]
  61. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, and Y. Shimizugawa, "Third-order optical nonlinearities and their ultrafast response in Bi2O3—B2O3—SiO2 glasses," J. Opt. Soc. Am. B 16, 1904-1908 (1999).
  62. N. L. Boling, A. J. Glass, and A. Owyoung, "Empirical relationships for predicting nonlinear refractive index changes in optical solids," IEEE J. Quantum Electron. QE-14, 601-608 (1978). [CrossRef]
  63. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  64. J. R. Heflin, Y. M. Cai, and A. F. Garito, "Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains," J. Opt. Soc. Am. B 8, 2132-2147 (1991).
  65. U. Gubler and C. Bosshard, "Optical third-harmonic generation of fused silica in gas atmosphere: absolute value of the third-order nonlinear susceptibility chi(3)," Phys. Rev. B 61, 10702-10710 (2000). [CrossRef]
  66. F. Kajzar and J. Messier, "Third-harmonic generation in liquids," Phys. Rev. A 32, 2352-2363 (1985). [CrossRef]
  67. G. R. Meredith, B. Buchalter, and C. Hanzlik, "Third-order optical susceptibility determination by third harmonic generation. 1," J. Chem. Phys. 78, 1533-1542 (1983). [CrossRef]
  68. P. S. Tsai, N. Nishimura, E. J. Yoder, E. M. Dolnick, G. A. White, and D. Kleinfeld, "Principles, design, and construction of a two photon laser scanning microscope for in vitro and in vivo brain imaging," in In Vivo Optical Imaging of Brain Function, R.D.Frostig, ed. (CRC Press, 2002), pp. 113-171.
  69. D. J. Segelstein, "The complex refractive index of water," M.S. thesis (University of Missouri, Kansas City, 1981).
  70. K. I. Hildrum, T. Isaksson, T. Naes, and A. Tandberg, Near Infra-red Spectroscopy: Bridging the Gap between Data Analysis and NIR Applications, Ellis Horwood Series in Analytical Chemistry (Ellis Horwood, 1992), p. 473.
  71. K. Murayama, B. Yuan, Y. Ozaki, M. Tomida, and S. Era, "Near-infrared spectroscopy for liquids of microliter volume using capillaries with wall transmission," Analyst (Cambridge, U.K.) 128, 957-959 (2003).
  72. H. EI-Kashef, "Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene," Opt. Mater. (Amsterdam, Neth.) 20, 81-86 (2002). [CrossRef]
  73. B. Halle and M. Davidovic, "Biomolecular hydration: from water dynamics to hydrodynamics," Proc. Natl. Acad. Sci. U.S.A. 100, 12135-12140 (2003). [CrossRef]
  74. J. L. Dela Cruz and G. J. Blanchard, "The influence of chromophore structure on intermolecular interactions. A study of selected rhodamines in polar protic and aprotic solvents," J. Phys. Chem. A 106, 10718-10724 (2002). [CrossRef]
  75. G. R. Fleming and M. Cho, "Chromophore-solvent dynamics," Annu. Rev. Phys. Chem. 47, 109-134 (1996). [CrossRef]
  76. A. Bondi, "van der Waals volumes and radii," J. Phys. Chem. 68, 441-451 (1964).
  77. H. T. Edward, "Molecular volumes and the Stokes-Einstein equation," J. Chem. Educ. 47, 261-270 (1970).
  78. J. E. Selwyn and J. I. Steinfeld, "Aggregation equilibria of xanthene dyes," J. Phys. Chem. 76, 762-774 (1971). [CrossRef]
  79. F. L. Arbelo, P. R. Ojeda, and I. L. Arbeloa, "On the aggregation of rhodamine B in ethanol," Chem. Phys. Lett. 148, 253-258 (1988). [CrossRef]
  80. H. G. Elias, Makromolekule (Wiley-VCH, 1990).
  81. D. Arosio, H. E. Kwansa, H. Gering, G. Piszczek, and E. Bucci, "Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites," Biopolymers 63, 1-11 (2002). [CrossRef]
  82. B. F. Levine and C. G. Bethea, "Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids," Appl. Phys. Lett. 24, 445-447 (1973). [CrossRef]
  83. H. Reis, M. G. Papadopoulos, and D. N. Theodorou, "Calculation of refractive indices and third-harmonic generation susceptibilities of liquid benzene and water: comparison of continuum and discrete local-field theories," J. Phys. Chem. 114, 876-881 (2000).
  84. C. Xu and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050nm," J. Opt. Soc. Am. B 13, 481-491 (1996).
  85. D. L. Wokosin, C. M. Loughrey, and G. L. Smith, "Characterization of a range of Fura dyes with two-photon excitation," Biophys. J. 86, 1726-1738 (2004).
  86. C. Xu, R. M. Williams, W. Zipfel, and W. W. Webb, "Multiphoton excitation cross-sections of molecular fluorophores," Bioimaging 4, 198-207 (1996). [CrossRef]
  87. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, "Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy," Proc. Natl. Acad. Sci. U.S.A. 93, 10763-10768 (1996). [CrossRef]
  88. W. Orttung and J. Warner, "Refractive index dispersion in equine hemoglobin solutions," J. Phys. Chem. 69, 3188-3190 (1965).
  89. D. Faber, E. G. Mik, A. Aalders, and T. G. van Leeuwen, "Oxygen saturation dependent index of refraction of hemoglobin solutions assessed by OCT," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedical VII, V. Tuchin, J. Izatt, and J. Fuijimoto, eds., Proc. SPIE4956, 271-281 (2003).
  90. X. Quan and E. Fry, "Empirical equation for the index of refraction of seawater," Appl. Opt. 34, 3477-3480 (1995).
  91. L. V. Butov, A. Zrenner, G. Abstreiter, A. V. Petinova, and K. Eberl, "Direct and indirect magnetoexcitons in symmetrical lnxAg1−xAs/GaAs coupled quantum wells," Phys. Rev. B 52, 12153-12157 (1995). [CrossRef]
  92. M. L. Ferrer, R. Duchowicz, B. Carrasco, J. G. de la Torre, and A. U. Acuñ, "The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodymic modeling study," Biophys. J. 80, 2422-2430 (2001).
  93. T. Lazaridis, "Solvent reorganization energy and entropy in hydrophobic hydration," J. Phys. Chem. B 104, 4964-4979 (2000). [CrossRef]
  94. K. E. S. Tang and V. A. Bloomfield, "Excluded volume in solvation: sensitivity of scaled-particle theory to solvent size and density," Biophys. J. 79, 2222-2234 (2000).
  95. C. E. Giacomelli, M. J. Esplandiu, P. I. Ortiz, M. J. Avena, and C. P. De Pauli, "Ellipsometric study of bovine serum albumin adsorped onto Ti/TiO2 electrodes," J. Colloid Interface Sci. 218, 404-411 (1999). [CrossRef]
  96. A. Samokhvalov and R. Naaman, "Wavelength- and time-dependent two-photon photoemission spectroscopy of dye-coated silicon surface," J. Phys. Chem. B 104, 11248-11252 (2000). [CrossRef]
  97. W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, "Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies," Annu. Rev. Phys. Chem. 49, 99-123 (1998). [CrossRef]
  98. A. B. Myers, "Molecular electronic spectral broadening in liquids and glasses," Annu. Rev. Phys. Chem. 49, 267-295 (1998). [CrossRef]
  99. P. Vohringer, D. C. Arnett, R. A. Westervelt, M. J. Feldstein, and N. F. Scherer, "Optical dephasing on femtosecond time scales: direct measurement and calculation from solvent spectral densities," J. Chem. Phys. 102, 4027-4036 (1994). [CrossRef]
  100. M. Sinclair, D. Moses, K. Akagi, and A. J. Heeger, "Anisotropy of the third-order nonlinear-optical susceptibility in a degenerate-ground-state conjugated polymer: trans-(CH)x," Phys. Rev. B 38, 10724-10733 (1988). [CrossRef]
  101. V. Shcheslavskiy, G. I. Petrov, S. Saltiel, and V. V. Yakovlev, "Quantitative characterization of aqueous solutions probed by the third-harmonic generation microscopy," J. Struct. Biol. 147, 42-49 (2004). [CrossRef]
  102. A. H. Buist, M. Muller, R. I. Ghauharali, G. J. Brakenhoff, J. A. Squier, C. J. Bardeen, V. V. Yakeovlev, and K. R. Wilson, "Probing microscopic chemical environments with high-intensity chirped pulses," Opt. Lett. 24, 244-246 (1999).
  103. J. A. Squier, K. R. Wilson, V. V. Yakovlev, C. Bardeen, A. Buist, M. Muller, and G. J. Brakenhoff, "Effect of pulse phase and shape on the efficiency of multiphoton processes: implications for fluorescence microscopy," in Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999), p. 80.
  104. H. Kawano, Y. Nabekawa, A. Suda, Y. Oishi, H. Mizuno, A. Miyawaki, and K. Midorikawa, "Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses," Biochem. Biophys. Res. Commun. 11, 592-596 (2003).
  105. F. Kajzar and J. Messier, "Original technique for third-harmonic-generation measurements in liquids," Rev. Sci. Instrum. 58, 2081-2085 (1987). [CrossRef]
  106. I. E. Borissevitch, N. Rakov, G. S. Maciel, and C. B. de Araujo, "Changes in porphyrin nonlinear absorption owing to interaction with bovine serum albumin," Appl. Opt. 39, 4431-4435 (2000).
  107. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. U.S.A. 95, 15741-15746 (1998). [CrossRef]
  108. E. Chaigneau, M. Oheim, E. Audinat, and S. Charpak, "Two-photon imaging of capillary blood flow in olfactory bulb glomeruli," Proc. Natl. Acad. Sci. U.S.A. 100, 13081 -13086 (2003). [CrossRef]
  109. I. H. Malitson, "Interspecimen comparison of refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965).
  110. Edmund Industrial Optics, "Glass Materials Table," www.edmundoptics.com, ed. (2001).
  111. J. M. Resa, C. Gonzalez, S. O. de Landaluce, and J. Lanz, "Densities, excess molar volumes, and refractive indices of ethyl acetate and aromatic hydrocarbon binary mixtures," J. Chem. Thermodyn. 34, 995-1004 (2002).
  112. P. D. T. Huibers, "Models for the wavelength dependence of the index of refraction of water," Appl. Opt. 36, 3785-3787 (1997).
  113. S. Yaltkaya and R. Aydin, "Experimental investigation of temperature effect on the refractive index of dye laser solutions," Turk. J. Phys. 26, 41-47 (2002).
  114. G. E. Perlmann, L. G. Longsworth, "The specific refractive increment of some purified proteins," J. Am. Chem. Soc. 70, 2719-2724 (1948).
  115. H. J. Coles, B. R. Jennings, and V. J. Morris, "Refractive index increment measurement for bacterial suspensions," Phys. Med. Biol. 20, 310-313 (1975). [CrossRef]
  116. M. Halwer, G. C. Nutting, and B. A. Brice, "Molecular weight of lactoglobulin, ovalbumin, lysozyme and serum albumin by light scattering," J. Am. Chem. Soc. 73, 2786-2790 (1951).
  117. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488-7495 (1998). [CrossRef]
  118. P. Latimer, "Anomalous dispersion of CS2 and ChCl3: theoretical predictions," J. Opt. Soc. Am. 51, 116-118 (1961).
  119. E. M. Vogel, S. G. Kosinski, D. M. Krol, J. L. Jackel, S. R. Friberg, M. K. Oliver, and J. D. Powers, "Structural and optical study of silicate glasses for nonlinear optical devices," J. Non-Cryst. Solids 107, 244-250 (1989). [CrossRef]
  120. H. Nasu, J. Matsuoka, and K. Kanichi, "Second- and third-order optical non-linearity of homogeneous glasses," J. Non-Cryst. Solids 178, 23-30 (1994). [CrossRef]
  121. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293-1295 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited