OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

One-photon electrodynamics in optical fiber with fluorophore systems. I. One-photon correspondence principle for electromagnetic field propagation in matter

Rod W. C. Vance and François Ladouceur  »View Author Affiliations


JOSA B, Vol. 24, Issue 4, pp. 928-941 (2007)
http://dx.doi.org/10.1364/JOSAB.24.000928


View Full Text Article

Enhanced HTML    Acrobat PDF (414 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A system of coupled quantum harmonic oscillators (QHOs) whose Hamiltonian conserves photon number begets a one-photon correspondence principle (OPCoP), which allows solutions to the classical linear Maxwell equations for propagation in matter to be reinterpreted as a precise description of a one-photon state. We state, prove, and explore the OPCoP, whereby the vast extant body of linear, sourceless optical waveguide theory [Optical Waveguide Theory (Chapman & Hall, 1983)] can be applied to the exact analysis of one-photon propagation in optical fibers.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(180.1790) Microscopy : Confocal microscopy
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Quantum Optics

History
Original Manuscript: August 9, 2006
Manuscript Accepted: November 14, 2006
Published: March 15, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Rod W. C. Vance and François Ladouceur, "One-photon electrodynamics in optical fiber with fluorophore systems. I. One-photon correspondence principle for electromagnetic field propagation in matter," J. Opt. Soc. Am. B 24, 928-941 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-24-4-928


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Marcuse, Engineering Quantum Electrodynamics (Harcourt Brace, 1970).
  2. I. Bialynicki-Birula, "On the wave function of the photon," Acta Phys. Pol. A 86, 97-116 (1994).
  3. I. Bialynicki-Birula, "The photon wave function," in Coherence and Quantum Optics VII, J.H.Eberly, L.Mandel, and E.Wolf, eds. (Plenum, 1996), pp. 313-322.
  4. I. Bialynicki-Birula, "Photon wave function," Prog. Opt. 36, 245-294 (1996).
  5. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  6. P. M. Delaney, M. R. Harris, and R. G. King, "Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging," Appl. Opt. 33, 573-577 (1994). [CrossRef] [PubMed]
  7. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers Systems and Signal Processing (IEEE, Bangalore, India, 1984), pp. 175-179.
  8. R. W. C. Vance and F. Ladouceur, "One-photon electrodynamics in optical fiber with fluorophore systems. II. One-polariton propagation in fluorophore-driven fibers from the one-photon correspondence principle," J. Opt. Soc. Am. B 24, 942-958 (2007).
  9. L. Schiff, Quantum Mechanics (McGraw-Hill, 1968).
  10. R. Loudon, The Quantum Theory of Light (Oxford U. Press, 2000).
  11. Wikipedia entry, "Quantum harmonic oscillator," http://en.wikipedia.org/wiki/Quantumlowbarharmoniclowbaroscillator.
  12. Wolfram Scienceworld entry, "Simple harmonic oscillator--quantum mechanical," http://scienceworld.wolfram.com/physics/SimpleHarmonicOscillatorQuantumMechanical.html.
  13. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford U. Press, 1982), pp. 136-140.
  14. J. J. Hopfield, "Theory of the contribution of excitons to the complex dielectric constant of crystals," Phys. Rev. 112, 1555-1567 (1958). [CrossRef]
  15. B. Huttner and S. M. Barnett, "Quantization of the electromagnetic field in dielectrics," Phys. Rev. A 46, 4306-4322 (1992). [CrossRef] [PubMed]
  16. G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins U. Press, 1996).
  17. E. Schrödinger, "The constant crossover of micro- to macro- mechanics," Naturwiss. 40, 664-666 (1926).
  18. W. Rossmann, Lie Groups: An Introduction Through Linear Groups (Oxford U. Press, 2003).
  19. R. J. Glauber, "Coherent and incoherent states of the radiation field," Phys. Rev. 131, 2766-2788 (1963). [CrossRef]
  20. M. O. Scully and M. Suhail Zubiary, Quantum Optics (Cambridge U. Press, 1997).
  21. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge U. Press, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited