Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors

Not Accessible

Your library or personal account may give you access

Abstract

Design strategies for microstructured-optical-fiber (MOF-) based surface-plasmon-resonance (SPR) sensors are presented. In such sensors, plasmons on the inner surface of the large metallized channels containing analyte can be excited by a fundamental mode of a single-mode microstructured fiber. Phase matching between a plasmon and a core mode can be enforced by introducing air-filled microstructures into the fiber core. Particularly, in its simplest implementation, the effective refractive index of a fundamental mode can be lowered to match that of a plasmon by introducing a small central hole into the fiber core. Resolution of the MOF-based sensors is demonstrated to be as low as 3×105RIU, where RIU means refractive index unit. The ability to integrate large-size microfluidic channels for efficient analyte flow together with a single-mode waveguide of designable modal refractive index is attractive for the development of integrated highly sensitive MOF-SPR sensors operating at any designable wavelength.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Photonic bandgap fiber-based Surface Plasmon Resonance sensors

Bertrand Gauvreau, Alireza Hassani, Majid Fassi Fehri, Andrei Kabashin, and Maksim Skorobogatiy
Opt. Express 15(18) 11413-11426 (2007)

Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core

Nannan Luan, Ran Wang, Wenhua Lv, and Jianquan Yao
Opt. Express 23(7) 8576-8582 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved