OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 8 — Aug. 10, 2007

Reconstructing the impulse response of a diffusive medium with the Kramers–Kronig relations

Er’el Granot and Shmuel Sternklar  »View Author Affiliations


JOSA B, Vol. 24, Issue 7, pp. 1620-1626 (2007)
http://dx.doi.org/10.1364/JOSAB.24.001620


View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Kramers–Kronig (KK) algorithm, useful for retrieving the phase of a spectrum based on the known spectral amplitude, is applied to reconstruct the impulse response of a diffusive medium. It is demonstrated by a simulation of a 1D scattering medium with realistic parameters that its impulse response can be generated from the KK method with high accuracy.

© 2007 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(110.7050) Imaging systems : Turbid media
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering

ToC Category:
Scattering

History
Original Manuscript: January 26, 2007
Manuscript Accepted: March 18, 2007
Published: June 15, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Er'el Granot and Shmuel Sternklar, "Reconstructing the impulse response of a diffusive medium with the Kramers-Kronig relations," J. Opt. Soc. Am. B 24, 1620-1626 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-24-7-1620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2000).
  2. L. Wang, P. P. Ho, F. Liu, G. Zhang, and R. R. Alfano, "Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate," Science 253, 769-771 (1991). [CrossRef] [PubMed]
  3. J. C. Hebden and D. T. Delpy, "Enhanced time-resolved imaging with a diffusion model of photon transport," Opt. Lett. 19, 311-313 (1994). [CrossRef] [PubMed]
  4. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005). [CrossRef] [PubMed]
  5. A. Ya. Polishchuk, J. Dolne, F. Liu, and R. R. Alfano,"Average and most-probable photon paths in random media," Opt. Lett. 22, 430-432 (1997). [CrossRef] [PubMed]
  6. L. Wang, X. Liang, P. Galland, P. P. Ho, and R. R. Alfano, "True scattering coefficients of turbid matter measured by early-time gating," Opt. Lett. 20, 913-915 (1995). [CrossRef] [PubMed]
  7. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Lasers (Kluwer Academic, 2002). [CrossRef]
  8. G. Stibenz and G. Steinmeyer, "Interferometric frequency-resolved optical gating," Opt. Express 13, 2617-2626 (2005). [CrossRef] [PubMed]
  9. X. Intes, B. Chance, M. J. Holboke, and A. G. Yodh, "Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity," Opt. Express 8, 223-231 (2001). [CrossRef] [PubMed]
  10. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995). [CrossRef]
  11. E. Granot and S. Sternklar, "Spectral ballistic imaging: a novel technique for viewing through turbid or obstructing media," J. Opt. Soc. Am. A 20, 1595-1599 (2003). [CrossRef]
  12. E. Granot, S. Sternklar, D. Schermann, Y. Ben-Aderet, and M. H. Itzhaq, "200 femtosecond impulse response of a Fabry-Perot etalon with the spectral ballistic imaging technique," Appl. Phys. B 82, 359-362 (2006). [CrossRef]
  13. E. Granot, S. Sternklar, Y. Ben-Aderet, and D. Schermann, "Quasi-ballistic imaging through a dynamic scattering medium with optical-field averaging using spectral-ballistic-imaging," Opt. Express 14, 8598-8603 (2006). [CrossRef] [PubMed]
  14. R. Kronig, "On the theory of dispersion of X-rays," J. Opt. Soc. Am. 12, 547-557 (1926). [CrossRef]
  15. H. A. Kramers, Estratto dagli Atti del Congresso Internazionale di Fisici Como (Nicolo Zonichello, 1927).
  16. G. W. Milton, D. J. Eyre, and J. V. Mantese, "Finite frequency range Kramers-Kronig relations: bounds on the dispersion," Phys. Rev. Lett. 79, 3062-3065 (1997). [CrossRef]
  17. R. K. Ahrenkiel, "Modified Kramers-Kronig analysis of optical spectra," J. Opt. Soc. Am. 61, 1651-1655 (1971). [CrossRef]
  18. K. F. Palmer, M. Z. Williams, and B. A. Budde, "Multiply subtractive Kramers-Kronig analysis of optical data," Appl. Opt. 37, 2660-2673 (1998). [CrossRef]
  19. J. S. Toll, "Causality and the dispersion relation: logical foundations," Phys. Rev. 104, 1760 (1956). [CrossRef]
  20. R. H. J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, "Kramers-Kronig relations for an interferometer," Opt. Commun. , 138, 118-126 (1997). [CrossRef]
  21. M. Beck, I. A. Walmsley, and J. D. Kafka, "Group delay measurements of optical components near 800nm," IEEE J. Quantum Electron. 27, 2074-2081 (1991). [CrossRef]
  22. V. Lucarini, J. J. Saarinen, K.-E. Peiponen, and E. M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited