OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 4 — Apr. 23, 2008

Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

Lars Rindorf and Ole Bang  »View Author Affiliations


JOSA B, Vol. 25, Issue 3, pp. 310-324 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000310


View Full Text Article

Enhanced HTML    Acrobat PDF (577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally valid, and we identify a previously unaccounted term for temperature and strain sensing. It is shown that dispersion plays a central role in determining the sensitivity, and that dispersion may enhance or suppress sensitivity as well as change the sign of the resonant wavelength shifts. We propose a quality factor, Q, for characterizing long period gratings sensors.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystals

History
Original Manuscript: August 10, 2007
Manuscript Accepted: November 19, 2007
Published: February 13, 2008

Virtual Issues
Vol. 3, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Lars Rindorf and Ole Bang, "Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing," J. Opt. Soc. Am. B 25, 310-324 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-25-3-310


Sort:  Year  |  Journal  |  Reset  

References

  1. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57-79 (2003). [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  3. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9, 319-327 (2001). [CrossRef] [PubMed]
  4. G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 4, 349-350 (2003). [CrossRef]
  5. G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Structural long-period gratings in photonic crystal fibers,” Opt. Lett. 27, 1013-1015 (2002). [CrossRef]
  6. M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236-238 (2003). [CrossRef] [PubMed]
  7. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  8. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and gratings in dye-doped polymer optical fibers,” Opt. Fiber Technol. 5, 242-251 (1999). [CrossRef]
  9. Z. Li, Y. Tam, L. Xu, and Q. Zhang, “Fabrication of long-period gratings in poly(methyl methacrylate-co-methyl vinyl ketone-co-benzyl methacrylate)-core polymer optical fiber by use of a mercury lamp,” Opt. Lett. 30, 1117-1119 (2005). [CrossRef] [PubMed]
  10. H. Dobb, D. Webb, K. Kalli, A. Argyros, M. Large, and M. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30, 3296-3298 (2005). [CrossRef]
  11. M. P. Hiscocks, M. A. van Eijkelenborg, A. Argysor, and M. C. J. Large, “Stable imprinting of long-period gratings in microstructured polymer optical fibre,” Opt. Express 14, 4644-4649 (2006). [CrossRef] [PubMed]
  12. O. Frazao, J. P. Carvalho, L. A. Ferreira, F. M. Araujo, and J. L. Santos, “Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres,” Meas. Sci. Technol. 16, 2109-2113 (2005). [CrossRef]
  13. H. Dobb, K. Kalli, and D. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 11, 657-658 (2004). [CrossRef]
  14. H. R. Sorensen, J. Canning, J. Laegsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibres,” Opt. Express 14, 6428-6433 (2006). [CrossRef] [PubMed]
  15. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72, 2895-2900 (2000). [CrossRef] [PubMed]
  16. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  17. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883-5889 (2005). [CrossRef] [PubMed]
  18. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with topas microstructured polymer optical fiber,” Opt. Lett. 32, 460-462 (2007). [CrossRef] [PubMed]
  19. C. Kerbage and B. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82, 1338-1340 (2003); erratum ibid., 1059 (2007). [CrossRef]
  20. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, “Biochemical sensing using photonic crystal fiber long-period gratings,” Opt. Express 14, 8824-8831 (2006). [CrossRef]
  21. M. C. P. Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement,” Meas. Sci. Technol. 17, 992-997 (2006). [CrossRef]
  22. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385, 1370-1375 (2006). [CrossRef] [PubMed]
  23. B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, and J. A. Rogers, “Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics,” Appl. Phys. Lett. 83, 4912-4914 (2003). [CrossRef]
  24. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426-3443 (2005). [CrossRef]
  25. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002). [CrossRef]
  26. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the v parameter in photonic crystal fibers,” Opt. Lett. 28, 1879-1881 (2003). [CrossRef] [PubMed]
  27. A. Yariv and P. Yeh, Photonics (Oxford U. Press, 2007).
  28. X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20, 255-266 (2002). [CrossRef]
  29. Comsol Multiphysics, http://www.comsol.com.
  30. The International Association for the Properties of Water and Steam, http://www.iapws.org/relguide/rindex.pdf.
  31. X. Daxhelet and M. Kulishov, “Theory and practice of long-period gratings: when a loss becomes a gain,” Opt. Lett. 28, 686-688 (2003). [CrossRef] [PubMed]
  32. N. Burani and J. Laegsgaard, “Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2487-2493 (2005). [CrossRef]
  33. H. Dobb, K. Kalli, and D. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre,” Opt. Commun. 260, 184-191 (2006). [CrossRef]
  34. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, “Strain and temperature characterization of photonic crystal fiber Bragg gratings,” Opt. Lett. 30, 1785-1787 (2005). [CrossRef] [PubMed]
  35. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U.-C. Paek, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21-26 (2002). [CrossRef] [PubMed]
  36. J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, “Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature strain and external refractive index,” J. Lightwave Technol. 25, 1306-1312 (2007). [CrossRef]
  37. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited