OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Simulated holographic three-dimensional intensity shaping of evanescent-wave fields

Laura C. Thomson, Graeme Whyte, Michael Mazilu, and Johannes Courtial  »View Author Affiliations


JOSA B, Vol. 25, Issue 5, pp. 849-853 (2008)
http://dx.doi.org/10.1364/JOSAB.25.000849


View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The size of bright structures in traveling-wave light fields is limited by diffraction. This in turn limits a number of technologies, for example, optical trapping. One way to beat the diffraction limit is to use evanescent waves instead of traveling waves. Here we apply a holographic algorithm, direct search, to the shaping of complex evanescent-wave fields. We simulate three-dimensional intensity shaping of evanescent-wave fields using this approach, and we investigate some of its limitations.

© 2008 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Holography

History
Original Manuscript: December 11, 2007
Revised Manuscript: March 4, 2008
Manuscript Accepted: March 5, 2008
Published: April 30, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Laura C. Thomson, Graeme Whyte, Michael Mazilu, and Johannes Courtial, "Simulated holographic three-dimensional intensity shaping of evanescent-wave fields," J. Opt. Soc. Am. B 25, 849-853 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-25-5-849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. The size and separation of extrema can be arbitrarily small, provided their visibility is also arbitrarily small .
  2. P. J. Reece, V. Garcés-Chávez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88, 221116 (2006). [CrossRef]
  3. T. Cizmár, M. Siler, M. Serý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006). [CrossRef]
  4. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  6. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, J. P. Samluk, and D. W. Prather, “Perfect lens makes a perfect trap,” Opt. Express 14, 2228-2235 (2006). [CrossRef] [PubMed]
  7. L. C. Thomson, Y. Boissel, G. Whyte, E. Yao, and J. Courtial, “Simulation of superresolution holography for optical tweezers,” New J. Phys. 10, 023015 (2008). [CrossRef]
  8. L. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1-8 (2006). [CrossRef]
  9. R. F. Wallis and G. I. Stegeman, eds., Electromagnetic Surface Excitations (Springer-Verlag, 1986). [CrossRef]
  10. O. Bryngdahl, “Holography with evanescent waves,” J. Opt. Soc. Am. 59, 1645-1650 (1969). [CrossRef]
  11. S. I. Bozhevolnyi and B. Vohnsen, “Near-field optical holography,” Phys. Rev. Lett. 77, 3351-3354 (1996). [CrossRef] [PubMed]
  12. P. S. Ramanujam, “Evanescent polarization holographic recording of sub-200-nm gratings in an azobenzene polyester,” Opt. Lett. 28, 2375-2377 (2003). [CrossRef] [PubMed]
  13. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization ofliving cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  14. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788-2798 (1987). [CrossRef] [PubMed]
  15. A. Tarantola, Inverse Problem Theory (Society for Industrial and Applied Mathematics, 2005).
  16. M. Mazilu and K. Dholakia, “Subwavelength trapping volumes created using negative refraction,” presented at SPIE Optics & Photonics Meeting 2006, San Diego, Calif., August 13-17, 2006.
  17. M. Mazilu and K. Dholakia, “Limits and possibilities in subwavelength imaging using negative refraction,” presented at Photon06, Manchester, UK, September 4-7, 2006.
  18. M. Clark and R. Smith, “A direct-search method for the computer design of holograms,” Opt. Commun. 124, 150-164 (1996). [CrossRef]
  19. M. Berry, “Faster than Fourier,” in Fundamental Problems in Quantum Theory, J.A.Anandan and J.Safko, eds. (World Scientific, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited