OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Ultrafast diffraction of tightly focused waves with spatiotemporal stabilization

Carlos J. Zapata-Rodríguez  »View Author Affiliations

JOSA B, Vol. 25, Issue 9, pp. 1449-1457 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental studies of ultrafast beam shaping have come about from the need to compensate diffraction-induced dispersive effects in femtosecond laser beams. From a theoretical point of view, chromatic matching of diffracted spherical waves in the vicinity of the geometrical focus is attained by applying conveniently dispersive boundary conditions in the far-field zone, a subject thoroughly analyzed in the paraxial regime. For applications demanding high spatial resolution, however, high-numerical-aperture microscope objectives may be employed instead and would lead to nonparaxiality of the focal wavefields. These circumstances have motivated our investigation. Concretely we report on prerequisites for spectral invariance extended to wide-angle geometries, which provides stabilization of the spatiotemporal response in the Fourier plane. In this context, general boundary conditions are given in the frame of the Debye representation of wavefields. Features of this sort of dynamic apodization (spatial filtering) leading to perfect achromatization are described in detail.

© 2008 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

Original Manuscript: April 17, 2008
Revised Manuscript: July 2, 2008
Manuscript Accepted: July 2, 2008
Published: August 15, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Carlos J. Zapata-Rodríguez, "Ultrafast diffraction of tightly focused waves with spatiotemporal stabilization," J. Opt. Soc. Am. B 25, 1449-1457 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Gbur, T. D. Visser, and E. Wolf, “Anomalous behavior of spectra near phase singularities of focused waves,” Phys. Rev. Lett. 88, 013901 (2002). [CrossRef] [PubMed]
  2. C. J. Zapata-Rodríguez and J. A. Monsoriu, “Spectral anomalies in focused waves of different Fresnel numbers,” J. Opt. Soc. Am. A 21, 2418-2423 (2004). [CrossRef]
  3. C. J. Zapata-Rodríguez, “Analytical characterization of spectral anomalies in polychromatic apertured beams,” Opt. Commun. 257, 9-15 (2006). [CrossRef]
  4. C. J. Zapata-Rodríguez, “Spectral anomalies in supercontinuum focused waves,” Opt. Commun. 263, 131-134 (2006). [CrossRef]
  5. Z. L. Horváth and Z. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63, 026601 (2001). [CrossRef]
  6. B. K. A. Ngoi, K. Venkatakrishnan, B. Tan, P. Stanley, and L. E. N. Lim, “Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed laser micromachining,” Opt. Express 9, 200-206 (2001). [CrossRef] [PubMed]
  7. J. Amako, K. Nagasaka, and N. Kazuhiro, “Chromatic-distorsion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett. 27, 969-971 (2002). [CrossRef]
  8. S. Q. Zeng, X. Lv, C. Zhan, W. R. Chen, W. H. Xiong, Q. Luo, and S. L. Jacques, “Simultaneous compensation of spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31, 1091-1093 (2006). [CrossRef] [PubMed]
  9. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andrés, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett. 31, 2631-2633 (2006). [CrossRef] [PubMed]
  10. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28, 1918-1920 (2003). [CrossRef] [PubMed]
  11. S. P. Veetil, H. Schimmel, and F. Wyrowski, “Simulation of multibeam imaging in three-dimensional space and time with a diffractive optical element illuminated with a femtosecond pulse,” J. Opt. Soc. Am. B 24, 2580-2583 (2007). [CrossRef]
  12. M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771-778 (1996). [CrossRef]
  13. Z. Jiang, R. Jacquemin, and W. Eberhardt, “Time dependence of Fresnel diffraction of ultrashort laser pulses by a circular aperture,” Appl. Opt. 36, 4358-4361 (1997). [CrossRef] [PubMed]
  14. M. Lefrancois and S. Pereira, “Time evolution of the diffraction pattern of an ultrashort laser pulse,” Opt. Express 11, 1114-1122 (2003). [CrossRef] [PubMed]
  15. C. J. Zapata-Rodríguez, “Temporal effects in ultrashort pulsed beams focused by planar diffracting elements,” J. Opt. Soc. Am. A 23, 2335-2341 (2006). [CrossRef]
  16. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22, 767-772 (2005). [CrossRef]
  17. E. Heyman and T. Melamed, “Certain consideration in aperture synthesis for ultra wideband/short-pulsed fields,” IEEE Trans. Antennas Propag. AP-42, 518-525 (1994). [CrossRef]
  18. M. A. Porras, “Ultrashort pulsed Gaussian light beams,” Phys. Rev. E 58, 1086-1093 (1998). [CrossRef]
  19. S. Feng and H. G. Winful, “Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses,” Phys. Rev. E 61, 862-873 (2000). [CrossRef]
  20. C. J. R. Sheppard, “Generalized Bessel pulse beams,” J. Opt. Soc. Am. A 19, 2218-2222 (2002). [CrossRef]
  21. A. M. Shaarawi, S. M. Sedky, R. W. Ziolkowski, and I. M. Besieris, “The spatial distribution of the illumination of dynamic apertures and its effect on the decay rate of the radiated localized pulses,” J. Phys. A: Math. Gen. 29, 5157-5179 (1996). [CrossRef]
  22. A. M. Shaarawi, “Comparison of two localized wave fields generated from dynamic apertures,” J. Opt. Soc. Am. A 14, 1804-1816 (1997). [CrossRef]
  23. C. J. Zapata-Rodríguez, “Debye representation of dispersive focused waves,” J. Opt. Soc. Am. A 24, 675-686 (2007). [CrossRef]
  24. C. J. Zapata-Rodríguez, P. Andrés, G. Mínguez-Vega, J. Lancis, and J. A. Monsoriu, “Broadband focused waves with compensated spatial dispersion: transverse versus axial balance,” Opt. Lett. 32, 853-855 (2007). [CrossRef] [PubMed]
  25. C. J. Zapata-Rodríguez and M. T. Caballero, “Isotropic compensation of diffraction-driven angular dispersion,” Opt. Lett. 32, 2472-2474 (2007). [CrossRef] [PubMed]
  26. C. J. Zapata-Rodríguez and M. T. Caballero, “Ultrafast beam shaping with high-numerical-aperture microscope objectives,” Opt. Express 15, 308-313 (2007). [CrossRef]
  27. S. V. Kukhlevsky, G. Nyitray, and V. L. Kantsyrev, “Fields of optical waveguides as waves in free space,” Phys. Rev. E 64, 026603 (2001). [CrossRef]
  28. M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003). [CrossRef]
  29. M. A. Porras, “Diffraction effects in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002). [CrossRef]
  30. G. Nyitray and S. V. Kukhlevsky, “Distortion-free tight confinement and step-like decay of fs pulses in free space,” http://arxiv.org/abs/physics/0310057v1.
  31. G. Nyitray, V. Mathew, and S. V. Kukhlevsky, “Generation and interference collapse of distortion-less fs pulses in free space by Fresnel sources,” Opt. Commun. 281, 1082-1086 (2008). [CrossRef]
  32. S. V. Kukhlevsky and G. Nyitray, “Correlation between spatial and temporal uncertainties of a wave packet,” Opt. Commun. 209, 377-382 (2002). [CrossRef]
  33. S. V. Kukhlevsky, “Diffraction-free subwavelength-beam optics on a nanometer scale,” in Localized Waves, H.E.Hernández-Figueroa, M.Zamboni-Rached, and E.Recami, eds. (Wiley, 2008) pp. 273-297. [CrossRef]
  34. E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Opt. Commun. 39, 205-210 (1981). [CrossRef]
  35. A. E. Kaplan, “Diffraction-induced transformation of near-cycle and subcycle pulses,” J. Opt. Soc. Am. B 15, 951-956 (1998). [CrossRef]
  36. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  37. C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mol. Spectrosc. 40, 1631-1651 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited