OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Analysis of Bloch-surface-wave assisted diffraction-based biosensors

Marco Liscidini and J. E. Sipe  »View Author Affiliations


JOSA B, Vol. 26, Issue 2, pp. 279-289 (2009)
http://dx.doi.org/10.1364/JOSAB.26.000279


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A systematic study of Bloch surface wave (BSW) properties and applications in diffraction-based biosensors is presented. The design of such devices starts with the calculation of the BSW dispersion relation for a semi-infinite one-dimensional photonic crystal. We propose an approach in which polarization and 1DPC termination effects are simply described. Since in a realistic device the number of periods is limited, we investigate the issues arising from finite size effects and the choice of a structure substrate. Diffraction efficiency is studied as a function index contrast, multilayer termination, grating thickness, and number of periods. Numerical examples for Si Si O 2 and a - Si 1 x N x : H periodic dielectric stacks are presented, showing that BSW can be exploited for the realization of efficient diffraction-based biosensors from the infrared to the visible range.

© 2009 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: September 11, 2008
Manuscript Accepted: November 20, 2008
Published: January 23, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Marco Liscidini and J. E. Sipe, "Analysis of Bloch-surface-wave assisted diffraction-based biosensors," J. Opt. Soc. Am. B 26, 279-289 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-26-2-279


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. N. Prasad, Introduction to Biophotonics (Wiley, 2003). [CrossRef]
  2. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007). [CrossRef] [PubMed]
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 72, 81R-89R (2000). [CrossRef] [PubMed]
  4. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005). [CrossRef] [PubMed]
  5. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007). [CrossRef]
  6. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007). [CrossRef] [PubMed]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610-7615 (2007). [CrossRef] [PubMed]
  8. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  9. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  10. M. Shin and W. M. Robertson, “Surface-plasmon like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005). [CrossRef]
  11. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007). [CrossRef]
  12. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007). [CrossRef]
  13. S. Fine and W. P. Hansen, “Optical second harmonic generation in biological systems,” Appl. Opt. 10, 2350-2353 (1971). [CrossRef] [PubMed]
  14. A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997). [CrossRef]
  15. J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002). [CrossRef] [PubMed]
  16. H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001). [CrossRef]
  17. D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006). [CrossRef]
  18. F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76, 1971-1975 (2004). [CrossRef] [PubMed]
  19. F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004). [CrossRef] [PubMed]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).
  21. X. I. Saldana and G. Gonzalez de la Cruz, “Electromagnetic surface waves in semi-infinite superlattices,” J. Opt. Soc. Am. A 8, 36-40 (1991). [CrossRef]
  22. F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003). [CrossRef]
  23. S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005). [CrossRef]
  24. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006). [CrossRef]
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).
  26. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006). [CrossRef]
  27. J. E. Sipe, “A new treatment of the growing wave problem in surface optics,” Solid State Commun. 39, 493-496 (1981). [CrossRef]
  28. S. A. Shakir and A. F. Turner, “Method of poles for multilayer thin-film waveguides,” Appl. Phys. A 29, 151-155 (1982). [CrossRef]
  29. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502-1508 (1966). [CrossRef]
  30. C. B. Burckhardt, “Efficiency of a dielectric grating,” J. Opt. Soc. Am. 57, 601-603 (1967). [CrossRef]
  31. E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007). [CrossRef] [PubMed]
  32. C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006). [CrossRef]
  33. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610-2618 (1999). [CrossRef]
  34. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003). [CrossRef] [PubMed]
  35. S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems,” J. Opt. Soc. Am. B 23, 834-841 (2006). [CrossRef]
  36. J. H. Apfel, “Graphical method to design multilayer phase retarders,” Appl. Opt. 20, 1024-1029 (1981). [CrossRef] [PubMed]
  37. J. H. Apfel, “Phase retardance of periodic multilayer mirrors,” Appl. Opt. 21, 733-738 (1982). [CrossRef] [PubMed]
  38. M. Liscidini and L. C. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016613 (2006). [CrossRef]
  39. F. Villa, L. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27, 646-648 (2002). [CrossRef]
  40. E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006). [CrossRef]
  41. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978). [CrossRef]
  42. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999). [CrossRef]
  43. A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited