OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere

Davy Gérard, Alexis Devilez, Heykel Aouani, Brian Stout, Nicolas Bonod, Jérôme Wenger, Evgeny Popov, and Hervé Rigneault  »View Author Affiliations

JOSA B, Vol. 26, Issue 7, pp. 1473-1478 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dielectric microspheres illuminated by a tightly focused Gaussian beam can focus light on a tiny spot with subwavelength dimensions along the three directions of space. We report here a detailed experimental and theoretical study of the interaction between a single fluorescent molecule and this peculiar electromagnetic distribution. The microsphere increases the excitation intensity sensed by the molecule up to a factor of 2.2, while at the same time it allows for a collection efficiency of up to 60% by redirecting the light emitted at large incidences toward the optical axis. By combining these two effects, the number of collected fluorescence photons can be increased up to a factor of 5. We quantify the evolution of the excitation and collection contributions with the microsphere dimensions and compare our experimental findings with numerical simulations.

© 2009 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(260.2510) Physical optics : Fluorescence
(290.4020) Scattering : Mie theory
(350.3950) Other areas of optics : Micro-optics
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:

Original Manuscript: April 20, 2009
Manuscript Accepted: May 28, 2009
Published: June 30, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Davy Gérard, Alexis Devilez, Heykel Aouani, Brian Stout, Nicolas Bonod, Jérôme Wenger, Evgeny Popov, and Hervé Rigneault, "Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere," J. Opt. Soc. Am. B 26, 1473-1478 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  2. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005). [CrossRef] [PubMed]
  3. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008). [CrossRef]
  4. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  5. R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006). [CrossRef]
  6. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607-1615 (1977). [CrossRef]
  7. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615-1619 (1977). [CrossRef]
  8. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 91-104 (1997). [CrossRef]
  9. J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724-732 (1999). [CrossRef]
  10. T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000). [CrossRef] [PubMed]
  11. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906-1913 (2000). [CrossRef]
  12. J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008). [CrossRef]
  13. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999). [CrossRef]
  14. A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004). [CrossRef] [PubMed]
  15. R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007). [CrossRef]
  16. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297-15303 (2008). [CrossRef] [PubMed]
  17. A. Devilez, N. Bonod, B. Stout, D. Gérard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of photonic nanojets,” Opt. Express 17, 2089-2094 (2009). [CrossRef] [PubMed]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214-1220 (2004). [CrossRef] [PubMed]
  19. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  20. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930-6940 (2008). [CrossRef] [PubMed]
  21. J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008). [CrossRef] [PubMed]
  22. C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution--Methods and Applications (VCH-Wiley, 2002). [CrossRef]
  23. W. W. Webb, “Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus,” Appl. Opt. 40, 3969-3983 (2001). [CrossRef]
  24. B. Stout, M. Nevière, and E. Popov, “Light diffraction by a three-dimensional object: differential theory,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2385-2404 (2005). [CrossRef] [PubMed]
  25. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006). [CrossRef] [PubMed]
  26. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200-14212 (2008). [CrossRef] [PubMed]
  27. J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32, 203-214 (2003). [CrossRef] [PubMed]
  28. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800-6804 (2008). [CrossRef] [PubMed]
  29. A. Desmedt, D. Talaga, and J.-L. Bruneel, “Enhancement of the Raman scattering signal due to a nanolens effect,” Appl. Spectrosc. 61, 621-623 (2007). [CrossRef] [PubMed]
  30. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008). [CrossRef] [PubMed]
  31. S. Li, C. Du, X. Dong, L. Shi, X. Luo, X. Wei, and Y. Zhang, “Superlens nano-patterning technology based on the distributed polystyrene spheres,” Opt. Express 16, 14397-14403 (2008). [CrossRef] [PubMed]
  32. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713-13719 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited