OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Two-photon absorption cross section measurements of various two-photon initiators for ultrashort laser radiation applying the Z-scan technique

A. Ajami, W. Husinsky, R. Liska, and N. Pucher  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2290-2297 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002290


View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we describe the Z-scan measurements of the two-photon absorption (TPA) cross section of various two-photon initiators that are suitable for real three-dimensional structuring of photo-polymerizable formulation. The value of the TPA cross section for the initiator P3K was measured to be 256 GM as the maximum value among the synthesized initiators. Procedures for a precise Z-scan measurement including the measurement of Rayleigh length and beam waist radius are presented. The effect of the pulse width on the Z-scan signal is demonstrated. We also used a flow-cell geometry instead of a static cell in order to refresh the materials to avoid the decomposition of the molecules. This resulted in a more realistic TPA cross section which has been proven by suitable reference compounds.

© 2010 Optical Society of America

OCIS Codes
(120.6710) Instrumentation, measurement, and metrology : Susceptibility
(160.4330) Materials : Nonlinear optical materials
(190.4180) Nonlinear optics : Multiphoton processes
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 28, 2010
Revised Manuscript: September 7, 2010
Manuscript Accepted: September 9, 2010
Published: October 14, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
A. Ajami, W. Husinsky, R. Liska, and N. Pucher, "Two-photon absorption cross section measurements of various two-photon initiators for ultrashort laser radiation applying the Z-scan technique," J. Opt. Soc. Am. B 27, 2290-2297 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-27-11-2290


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999). [CrossRef]
  2. T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003). [CrossRef]
  3. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994). [CrossRef]
  4. L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).
  5. C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006). [CrossRef]
  6. R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007). [CrossRef]
  7. K. Ogawa and Y. Kobuke, “Recent advances in two-photon photodynamic therapy,” Anti-Cancer Agents in Medical Chemistry 8, 269–279 (2008). [CrossRef]
  8. S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009). [CrossRef] [PubMed]
  9. L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003). [CrossRef]
  10. G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007). [CrossRef] [PubMed]
  11. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  12. J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996). [CrossRef]
  13. Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006). [CrossRef]
  14. A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008). [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.
  16. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  17. H. Ma and C. B. De Araujo, “Two-color Z-scan technique with enhanced sensitivity,” Appl. Phys. Lett. 66, 1581–1583 (1995). [CrossRef]
  18. T. Xia, D. I. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994). [CrossRef] [PubMed]
  19. D. V. Petrov, A. S. L. Gomes, and C. B. De Araujo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994). [CrossRef]
  20. S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002). [CrossRef]
  21. A. I. Ryasnyansky and B. Palpant, “Theoretical investigation of the off-axis z-scan technique for nonlinear optical refraction measurement,” Appl. Opt. 45, 2773–2776 (2006). [CrossRef] [PubMed]
  22. J. M. Menard, M. Betz, I. Sigal, and H. M. Van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46, 2119–2122 (2007). [CrossRef] [PubMed]
  23. N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009). [CrossRef]
  24. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008). [CrossRef] [PubMed]
  25. B. A. Reinhardt, “Two-photon technology: New materials and evolving applications,” Photonics Sci. News 4, 21–33 (1999).
  26. A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009). [CrossRef]
  27. T. F. Johnston, Jr., “Beam propagation (M2) measurement made as easy as it gets: The four-cuts method,” Appl. Opt. 37, 4840–4850 (1998). [CrossRef]
  28. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000). [CrossRef]
  29. L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002). [CrossRef]
  30. R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007). [CrossRef]
  31. U. Gubler and C. Bosshard, “Molecular design for third-order nonlinear optics,” Adv. Polym. Sci. 158, 123–191 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited