OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Phase-conjugation of the isolated optical vortex using flat surfaces

A. Yu. Okulov  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2424-2427 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The robust method for obtaining the helical interference pattern due to the phase-conjugation of an isolated optical vortex by means of the non-holographic technique is proposed. It is shown that a perfect wavefront reversal of the vortex in a linear polarization state via an even number of reflections is achievable due to the turn of the photon’s momentum p k with respect to the photon’s orbital angular momentum projection L z . The possible experimental realization is based on cat’s eye-prism-like reflections inside the confocal optical loop cavity. The alternative scheme contains the Dove prism embedded in the optical loop with an odd number of reflections from mirrors. This confocal interferometric technique is applicable to optical tweezers, atomic traps, Sagnac laser loops, and metamaterials fabrication.

© 2010 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(030.6140) Coherence and statistical optics : Speckle
(070.5040) Fourier optics and signal processing : Phase conjugation
(140.3560) Lasers and laser optics : Lasers, ring
(160.1585) Materials : Chiral media
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Nonlinear Optics

Original Manuscript: July 26, 2010
Revised Manuscript: September 8, 2010
Manuscript Accepted: September 14, 2010
Published: October 27, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

A. Yu. Okulov, "Phase-conjugation of the isolated optical vortex using flat surfaces," J. Opt. Soc. Am. B 27, 2424-2427 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Hellwarth, “Generation of time-reversed wave fronts by nonlinear refraction,” J. Opt. Soc. Am. 67, 1–3 (1977). [CrossRef]
  2. B. Y. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  3. N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov, and A. Y. Okulov, “Laser interferometer with wavefront reversing mirrors,” Sov. Phys. JETP 52, 847–851 (1980).
  4. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974). [CrossRef]
  5. I. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wave-front dislocations and their properties,” Opt. Commun. 119, 604–612 (1995). [CrossRef]
  6. M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17, 22791–22799 (2009). [CrossRef]
  7. A. Yu. Okulov, “Twisted speckle entities inside wavefront reversal mirrors,” Phys. Rev. A 80, 013837 (2009). [CrossRef]
  8. A. Yu. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. B 41, 101001 (2008). [CrossRef]
  9. M. Bhattacharya, “Lattice with a twist: Helical waveguides for ultracold matter,” Opt. Commun. 279, 219–222 (2007). [CrossRef]
  10. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. W. H. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007). [CrossRef] [PubMed]
  11. A. Yu. Okulov, “Optical and sound helical structures in a Mandelstamm–Brillouin mirrors,” JETP Lett. 88, 487–491 (2008). [CrossRef]
  12. R. Marchiano, F. Coulouvrat, L. Gnjehi, and J.-L. Thomas, “Numerical investigation of the properties of nonlinear acoustical vortices through weakly heterogeneous media,” Phys. Rev. E 77, 016605 (2008). [CrossRef]
  13. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys. 7, 55 (2005). [CrossRef]
  14. M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118–121 (2010). [CrossRef]
  15. M. P. MacDonald, K. Volke-Sepulveda, L. Paterson, J. Arlt, W. Sibbett, and K. Dholakia, “Revolving interference patterns for the rotation of optically trapped particles,” Opt. Commun. 201, 21–28 (2002). [CrossRef]
  16. A. Yu. Okulov, “The effect of roughness of optical elements on the transverse structure of alight field in a nonlinear Talbot cavity,” J. Mod. Opt. 38, 1887–1890 (1991). [CrossRef]
  17. A. Yu. Okulov, “Two-dimensional periodic structures in nonlinear resonator,” J. Opt. Soc. Am. B 7, 1045–1050 (1990). [CrossRef]
  18. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  19. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  20. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  21. J. Arlt, M. MacDonald, L. Paterson, W. Sibbett, K. Volke-Sepulveda, and K. Dholakia, “Moving interference patterns created using the angular Doppler-effect,” Opt. Express 10, 844–852 (2002). [PubMed]
  22. Ch. V. Felde, P. V. Polyanski, and H. V. Bogatyryova, “Comparative analysis of techniques for diagnostics of phase singularities,” Ukr. J. Phys. Opt. 9, 82–90 (2008). [CrossRef]
  23. A. Yu. Okulov, “Scaling of diode-array-pumped solid-state lasers via self-imaging,” Opt. Commun. 99, 350–354 (1993). [CrossRef]
  24. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chaps. 4 and 17.
  25. D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, and J. Bibette, “Chiral colloidal clusters,” Nature 455, 380–382 (2008). [CrossRef] [PubMed]
  26. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  27. M. Thiel, H. Fischer, G. von Freymann, and M. Wegener, “Three-dimensional chiral photonic superlattices,” Opt. Lett. 35, 166–168 (2010). [CrossRef] [PubMed]
  28. Z. Menachem and M. Mond, “Infrared wave propagation in a helical waveguide with inhomogeneous cross section and application,” PIER 61, 159–162 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited