OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Radiation and gain behaviors in Tm 3 + -doped aluminum germanate substrate glasses and thermal ion-exchanged waveguide

Dianlai Yang, Edwin YunBun Pun, Naiqin Wang, and Hai Lin  »View Author Affiliations

JOSA B, Vol. 27, Issue 5, pp. 990-996 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tm 3 + -doped acid-resistant aluminum germanate (NMAG) glasses and a K + Na + ion-exchanged channel waveguide have been fabricated and characterized. Judd–Ofelt intensity parameters indicate a high asymmetry and strong covalent environment in NMAG glasses. A remarkable internal gain coefficient of 0.48 dB cm at 1.482 μ m wavelength was achieved in the 3.15 cm long channel waveguide. Based on absorption and emission cross-sections, the ideal internal gain coefficient at 1.675 μ m and 1.815 μ m is given to be 0.5 dB cm and 2.0 dB cm , respectively, as the population inversion equals 1.0. Experimental results and theoretical anticipation indicate that Tm 3 + -doped NMAG glasses are potential and attractive substrates in developing S- and U-band waveguide amplifiers and an eye-safe medical laser.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: December 22, 2009
Revised Manuscript: February 27, 2010
Manuscript Accepted: March 9, 2010
Published: April 26, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Dianlai Yang, Edwin Yun Bun Pun, Naiqin Wang, and Hai Lin, "Radiation and gain behaviors in Tm3+-doped aluminum germanate substrate glasses and thermal ion-exchanged waveguide," J. Opt. Soc. Am. B 27, 990-996 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Fusari, A. A. Lagatsky, B. Richards, A. Jha, W. Sibbett, and C. T. A. Brown, “Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 μm,” Opt. Express 16, 19146–19151 (2008). [CrossRef]
  2. M. M. Kozak, D. Goebel, R. Caspary, and W. Kowalsky, “Systematic investigation of the avalanche effect in highly thulium-doped fiber amplifiers,” Appl. Phys. B: Lasers Opt. 86, 55–59 (2007).
  3. J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge–Ga–S–Br glass,” J. Non-Cryst. Solids 353, 1676–1680 (2007). [CrossRef]
  4. C. Jiang and L. Jin, “Numerical model of an Er3+–Tm3+–Pr3+-codoped fiber amplifier pumped with an 800 nm laser diode,” Appl. Opt. 48, 2220–2227 (2009). [CrossRef] [PubMed]
  5. J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+–Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145–149 (1994). [CrossRef]
  6. V. K. Tikhomirov, K. Driesen, C. Gorller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb3+–Er3+–Tm3+ co-doped nano-glass-ceramics,” Opt. Express 15, 9535–9540 (2007). [CrossRef] [PubMed]
  7. A. Kermaoui and F. Pelle, “Synthesis and infrared spectroscopic properties of Tm3+-doped phosphate glasses,” J. Alloys Compd. 469, 601–608 (2009). [CrossRef]
  8. A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, Jr., E. B. da Costa, and V. B. do Nascimento, “White light generation by frequency upconversion in Tm3+∕Ho3+∕Yb3+-codoped fluorolead germanate glass,” Appl. Phys. Lett. 91, 091114 (2007). [CrossRef]
  9. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Opt. Quantum Electron. 36, 201–212 (2004). [CrossRef]
  10. H. Kalaycioglu, H. Cankaya, M. N. Cizmeciyan, A. Sennaroglu, and Gonul Ozen, “Spectroscopic investigation of Tm3+:TeO2–WO3 glass,” J. Lumin. 128, 1501–1506 (2008). [CrossRef]
  11. D. A. Simpson, W. E. K Gibbs, S. F. Collins, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, and G. W. Baxter, “Visible and near infra-red up-conversion in Tm3+∕Yb3+ co-doped silica fibers under 980 nm excitation,” Opt. Express 16, 13781–13799 (2008). [CrossRef] [PubMed]
  12. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photonics Technol. Lett. 10, 1244–1246 (1998). [CrossRef]
  13. A. S. S de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys.: Condens. Matter 14, 9495–9505 (2002). [CrossRef]
  14. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996). [CrossRef] [PubMed]
  15. G. Androz, D. Faucher, D. Gingras, and R. Vallee, “Self-pulsing dynamics of a dual-wavelength Tm3+:ZBLAN upconversion fiber laser emitting around 800 nm,” J. Opt. Soc. Am. B 24, 2907–2913 (2007). [CrossRef]
  16. E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, “Spectroscopy of Tm3+-doped tellurite glasses for 1470 nm fiber amplifier,” J. Appl. Phys. 92, 112–117 (2002). [CrossRef]
  17. J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO–Bi2O3–Ga2O3 glass,” Appl. Opt. 34, 4284–4289 (1995). [CrossRef] [PubMed]
  18. Y. S. Xu, D. P. Chen, Q. Zhang, H. D. Zeng, C. Shen, J. Adam, X. H. Zhang, and G. R. Chen, “Bright red upconversion luminescence of thulium ion-doped GeS2–In2S3–CsI glasses,” J. Phys. Chem. C 113, 9911–9915 (2009). [CrossRef]
  19. A. F. H. Librantz, L. Gomes, G. Pairier, S. J. L. Ribeiro, and Y. Messaddeq, “Tm and Tm–Tb-doped germanate glasses for S-band amplifiers,” J. Lumin. 128, 51–59 (2008). [CrossRef]
  20. G. Della Valle, A. Festa, G. Sorbello, K. Ennser, C. Cassagnetes, D. Barbier, and S. Taccheo, “Single-mode and high power waveguide lasers fabricated by ion-exchange,” Opt. Express 16, 12334–12341 (2008). [CrossRef] [PubMed]
  21. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+∕Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26, 357–363 (2009). [CrossRef]
  22. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24, 563–574 (2003). [CrossRef]
  23. R. Balda, J. Fernandez, S. Garcia-Revilla, and J. M. Fernandez-Navarro, “Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2–TiO2–Nb2O5 glass,” Opt. Express 15, 6750–6761 (2007). [CrossRef] [PubMed]
  24. H. Lin, K. Liu, L. Lin, Y. Y. Hou, D. L. Yang, T. C. Ma, E. Y. B. Pun, Q. D. An, J. Y. Yu, and S. Tanabe, “Optical parameters and upconversion fluorescence in Tm3+∕Yb3+-doped alkali-barium-bismuth-tellurite glasses,” Spectrochim. Acta, Part A 65, 702–707 (2006). [CrossRef]
  25. B. G. Aitken, M. J. Dejneka, and M. L. Powley, “Tm-doped alkaline earth aluminate glass for optical amplification at 1460 nm,” J. Non-Cryst. Solids 349, 115–119 (2004). [CrossRef]
  26. S. Q. Man, S. F. Wong, E. Y. B. Pun, and P. S. Chung, “1.47-μm emission and multiphonon relaxation of Tm3+ ions in potassium bismuth gallate glasses,” J. Opt. Soc. Am. B 21, 313–317 (2004). [CrossRef]
  27. L. Feng, Q. Tang, L. F. Liang, J. Wang, H. B. Liang, and Q. Su, “Optical transitions and up-conversion emission of Tm3+-singly doped and Tm3+∕Yb3+-codoped oxyfluoride glasses,” J. Alloys Compd. 436, 272–277 (2007). [CrossRef]
  28. K. S. V. Sudhakar, T. Satyanarayana, L. Srinivasa Rao, M. S. Reddy, and N. Veeraiah, “Optical absorption and self activated upconversion fluorescence spectra of Tm3+ ions in antimony borate glass systems,” Solid State Commun. 146, 441–445 (2008). [CrossRef]
  29. R. Balda, L. M. Lacha, J. Fernandez, and J. M. Fernandez-Navarro, “Optical spectroscopy of Tm3+ ions in GeO2–PbO–Nb2O5 glasses,” Opt. Mater. (Amsterdam, Neth.) 27, 1771–1775 (2005).
  30. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964). [CrossRef]
  31. B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352, 5344–5352 (2006). [CrossRef]
  32. M. Naftaly, S. X. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broad band amplifier at 1.47 μm,” Appl. Opt. 39, 4979–4984 (2000). [CrossRef]
  33. K. S. Chiang, Q. Liu, and K. P. Lor, “Refractive-index profiling of buried planar waveguides by an inverse Wentzel–Kramer–Brillouin Method,” J. Lightwave Technol. 26, 1367–1373 (2008). [CrossRef]
  34. P. R. Watekar, S. Ju, and W. T. Han, “Experimental realization of silica-glass Tm-doped fiber amplifier with 11.3-dB gain,” IEEE Photon. Technol. Lett. 19, 1478–1480 (2007). [CrossRef]
  35. C. Floridia, M. T. Carvalho, S. R. Luthi, and A. S. L. Gomes, “Modeling the distributed gain of single- (1050 or 1410 nm) and dual-wavelength- (800+1050 nm or 800+1410 nm) pumped thulium-doped fiber amplifiers,” Opt. Lett. 29, 1983–1985 (2004). [CrossRef] [PubMed]
  36. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16, 777–779 (2004). [CrossRef]
  37. X. Lu, Z. Y. You, J. F. Li, Z. J. Zhu, G. H. Jia, B. C. Wu, and C. Y. Tu, “Optical absorption and spectroscopic characteristics of Tm3+ ions doped NaY(MoO4)2 crystal,” J. Alloys Compd. 458, 462–466 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited