OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 12 — Sep. 30, 2010

Nanocomposite plasmonic fluorescence emitters with core/shell configurations

Xiaoyu Miao, Igal Brener, and Ting Shan Luk  »View Author Affiliations

JOSA B, Vol. 27, Issue 8, pp. 1561-1570 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence

ToC Category:
Physical Optics

Original Manuscript: May 7, 2010
Manuscript Accepted: June 7, 2010
Published: July 16, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Xiaoyu Miao, Igal Brener, and Ting Shan Luk, "Nanocomposite plasmonic fluorescence emitters with core/shell configurations," J. Opt. Soc. Am. B 27, 1561-1570 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing and waveguiding,” Nature Photon. 1, 641–648 (2007). [CrossRef]
  2. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nature Photon. 3, 388–394 (2009). [CrossRef]
  3. X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express 16, 13517–13525 (2008). [CrossRef] [PubMed]
  4. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  5. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Cambridge, U.K.) 133, 1308–1346 (2008). [CrossRef]
  6. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  7. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94, 101103 (2009). [CrossRef]
  8. R. Esteban, M. Laroche, and J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009). [CrossRef]
  9. X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application in DNA detection,” Appl. Phys. Lett. 94, 063111 (2009). [CrossRef]
  10. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avalasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie antenna,” Nature Photon. 3, 654–657 (2009). [CrossRef]
  11. N. J. Halas, “The optical properties of nanoshells,” Opt. Photonics News 13, 26–30 (2002). [CrossRef]
  12. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic substrates,” Proc. Natl. Acad. Sci. U.S.A. 101, 17930–17935 (2004). [CrossRef] [PubMed]
  13. R. Bardhan, N. K. Grady, and N. J. Halas, “Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells,” Small 4, 1716–1722 (2008). [CrossRef] [PubMed]
  14. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Friedmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and non-radiative effects,” Phys. Rev. Lett. 89, 203002 (2002). [CrossRef] [PubMed]
  15. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  16. J. Enderlein, “Theoretical study of single molecule fluorescence in a metallic nanocavity,” Appl. Phys. Lett. 80, 315–317 (2002). [CrossRef]
  17. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Lett. 4, 11–18 (2004). [CrossRef]
  18. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41, 1721–1730 (2008). [CrossRef] [PubMed]
  19. P. Zhang and Y. Guo, “Surface-enhanced Raman scattering inside metal nanoshells,” J. Am. Chem. Soc. 131, 3808–3809 (2009). [CrossRef] [PubMed]
  20. W. Li, X. Miao, T. S. Luk, and P. Zhang, “Enormous average enhancement factors from SERS-tags of TiO2-core mixed metal-shell nanoparticles,” submitted to Angewandte Chemie.
  21. J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell—bright particle,” J. Phys. Chem. B 110, 8986–8991 (2006). [CrossRef] [PubMed]
  22. J. Zhang, Y. Fu, and J. R. Lakowicz, “Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by metal nanostructure,” J. Phys. Chem. C 111, 1955–1961 (2007). [CrossRef]
  23. Y. Jin and X. Gao, “Plasmonic fluorescent quantum-dots,” Nat. Nanotechnol. 4, 571–576 (2009). [CrossRef] [PubMed]
  24. J. Enderlein, “Spectral properties of a fluorescing molecule within a spherical metallic nanocavity,” Phys. Chem. Chem. Phys. 4, 2780–2786 (2002). [CrossRef]
  25. U. Krebig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  26. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  27. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999). [CrossRef]
  28. P. B. Johnson and C. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  29. http://www.invitrogen.com.
  30. Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000). [CrossRef]
  31. S. Y. Liao, “Light transmittance and RF shielding effectiveness of a gold film on a glass substrate,” IEEE Trans. Electromagn. Compat. EMC-17, 211–216 (1975). [CrossRef]
  32. J. B. Khurgin and G. Sun, “Enhancement of optical properties of nanoscaled objects by metal nanoparticles,” J. Opt. Soc. Am. B 26, 83–95 (2009). [CrossRef]
  33. L. R. Hirsch, A. M. Gobin, A. R. Lowery, F. Tam, R. A. Drezek, N. J. Halas, and J. L. West, “Metal nanoshells,” Ann. Biomed. Eng. 34, 15–22 (2006). [CrossRef] [PubMed]
  34. B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008). [CrossRef]
  35. J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001). [CrossRef]
  36. A. J. Zarur and J. Y. Ying, “Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion,” Nature 403, 65–67 (2000). [CrossRef] [PubMed]
  37. M. Young, D. Willits, M. Uchida, and T. Douglas, “Plant viruses as biotemplates for materials and their use in nanotechnology,” Annu. Rev. Phytopathol. 46, 361–384 (2008). [CrossRef] [PubMed]
  38. X. Miao, T. S. Luk, I. Brener, C. Ashley, S. Xiong, D. Peabody, and J. Brinker, “Surface plasmon enhanced fluorescence emission inside metal nanoshells,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest CD (Optical Society of America, 2010), paper JThE20.
  39. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  40. S. A. Maier, P. G. Kik, H. A. Water, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nature Mater. 2, 229–232 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited