OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Bidirectionally pumped Cr 4 + :YAG crystal fiber light source for optical coherence tomography

Kuang-Yu Hsu, Dong-Yo Jheng, Mu-Han Yang, Yen-Sheng Lin, Kuang-Yao Huang, Yi-Han Liao, and Sheng-Lung Huang  »View Author Affiliations


JOSA B, Vol. 28, Issue 2, pp. 288-292 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000288


View Full Text Article

Enhanced HTML    Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband Cr 4 + :YAG double-clad crystal fiber light source with a collimated output power of 3.15 mW was demonstrated by using a bidirectional pump scheme. The bidirectional pump scheme increased the pumping efficiency and reduced the thermal problem along the fiber. Good agreement on the output power of the broadband fluorescence was achieved between experiment and theory, which showed a peak net gain coefficient of 0.03 cm 1 at the center wavelength near 1380 nm . The 3 dB bandwidth of 222 nm with a Gaussian-like spectrum makes it eminently suitable for broadband interferometric technique to have low image cross talk. The calculated interference signal shows a 3 dB width of 3.62 μm with a cross talk smaller than 24 dB for adjacent axial image pixels.

© 2011 Optical Society of America

OCIS Codes
(140.6630) Lasers and laser optics : Superradiance, superfluorescence
(160.3380) Materials : Laser materials
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Optical Devices

History
Original Manuscript: July 15, 2010
Revised Manuscript: November 2, 2010
Manuscript Accepted: November 23, 2010
Published: January 26, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Kuang-Yu Hsu, Dong-Yo Jheng, Mu-Han Yang, Yen-Sheng Lin, Kuang-Yao Huang, Yi-Han Liao, and Sheng-Lung Huang, "Bidirectionally pumped Cr4+:YAG crystal fiber light source for optical coherence tomography," J. Opt. Soc. Am. B 28, 288-292 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-28-2-288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997). [CrossRef] [PubMed]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]
  5. S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000). [CrossRef]
  6. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002). [CrossRef]
  8. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27, 1309–1311 (2002). [CrossRef]
  9. C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003). [CrossRef]
  10. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995). [CrossRef]
  11. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578–1586 (2001). [CrossRef]
  12. V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003). [CrossRef]
  13. D. Welford and M. A. Jaspan, “Single-frequency operation of a Cr:YAG laser from 1332 to 1554nm,” J. Opt. Soc. Am. B 21, 2137–2141 (2004). [CrossRef]
  14. A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002). [CrossRef]
  15. K. Y. Huang, K. Y. Hsu, and S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” J. Lightwave Technol. 26, 1632–1639 (2008). [CrossRef]
  16. J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007). [CrossRef]
  17. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008). [CrossRef] [PubMed]
  18. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408(2002). [CrossRef]
  19. G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999). [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991), p. 17.
  21. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129–131 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited