OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Transient two-dimensional spectroscopy with linear absorption corrections applied to temperature-jump two-dimensional infrared

Kevin C. Jones, Ziad Ganim, Chunte Sam Peng, and Andrei Tokmakoff  »View Author Affiliations

JOSA B, Vol. 29, Issue 1, pp. 118-129 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multidimensional spectroscopies provide increased spectral information but time resolution is often limited by the picosecond lifetimes of the transitions they probe. At the expense of additional complexity, transient multidimensional techniques extend the accessible timescales for studying nonequilibrium chemical and biophysical phenomena. Transient temperature-jump (T-jump) experiments are particularly versatile, since they can be applied to any temperature-dependent change of state. We have developed a method to correct transient nonlinear techniques for distortions resulting from transient linear absorption of the probing pulses, distortions which can lead to false interpretations of the data. We apply these corrections in the collection of T-jump transient two- dimensional infrared spectra for the peptides diglycine and the β-hairpin peptide trpzip2. For diglycine, the T-jump induces changes in H-bonding, a response which is inherent to all aqueous systems. The trpzip2 results probe the hairpin unfolding kinetics and reveal two time scales: < 10 ns increased flexibility and 1.1 μs β-hairpin disordering.

© 2011 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:

Original Manuscript: September 22, 2011
Manuscript Accepted: October 14, 2011
Published: December 9, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Kevin C. Jones, Ziad Ganim, Chunte Sam Peng, and Andrei Tokmakoff, "Transient two-dimensional spectroscopy with linear absorption corrections applied to temperature-jump two-dimensional infrared," J. Opt. Soc. Am. B 29, 118-129 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Woutersen and P. Hamm, “Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy,” J. Phys. Chem. B 104, 11316–11320 (2000). [CrossRef]
  2. A. Remorino, I. V. Korendovych, Y. Wu, W. F. DeGrado, and R. M. Hochstrasser, “Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer,” Science 332, 1206–1209 (2011). [CrossRef] [PubMed]
  3. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003). [CrossRef] [PubMed]
  4. H. Ishikawa, K. Kwak, J. K. Chung, S. Kim, and M. D. Fayer, “Direct observation of fast protein conformational switching,” Proc. Natl. Acad. Sci, U.S.A. 105, 8619–8624 (2008). [CrossRef] [PubMed]
  5. J. F. Cahoon, K. R. Sawyer, J. P. Schlegel, and C. B. Harris, “Determining transition-state geometries in liquids using 2D-IR,” Science 319, 1820–1823 (2008). [CrossRef] [PubMed]
  6. J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, “Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time,” Science 309, 1338–1343 (2005). [CrossRef] [PubMed]
  7. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008). [CrossRef] [PubMed]
  8. A. T. Krummel, P. Mukherjee, and M. T. Zanni, “Inter and intrastrand vibrational coupling in DNA studied with heterodyned 2D-IR spectroscopy,” J. Phys. Chem. B 107, 9165–9169(2003). [CrossRef]
  9. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005). [CrossRef] [PubMed]
  10. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258–5279 (2003). [CrossRef]
  11. M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem. 60, 21–38 (2009). [CrossRef]
  12. J. N. Bandaria, S. Dutta, M. W. Nydegger, W. Rock, A. Kohen, and C. M. Cheatum, “Characterizing the dynamics of functionally relevant complexes of formate dehydrogenase,” Proc. Natl. Acad. Sci, U.S.A. 107, 17974–17979 (2010). [CrossRef] [PubMed]
  13. C. Fang, J. D. Bauman, K. Das, A. Remorino, E. Arnold, and R. M. Hochstrasser, “Two-dimensional infrared spectra reveal relaxation of the nonnucleoside inhibitor TMC278 complexed with HIV-1 reverse transcriptase,” Proc. Natl. Acad. Sci, U.S.A. 105, 1472–1477 (2008). [CrossRef]
  14. J. M. Anna, M. R. Ross, and K. J. Kubarych, “Dissecting enthalpic and entropic barriers to ultrafast equilibrium isomerization of a flexible molecule using 2DIR chemical exchange spectroscopy,” J. Phys. Chem. A 113, 6544–6547 (2009). [CrossRef] [PubMed]
  15. J. Bredenbeck, J. Helbing, R. Behrendt, C. Renner, L. Moroder, J. Wachtveitl, and P. Hamm, “Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide.,” J. Phys. Chem. B 107, 8654–8660 (2003). [CrossRef]
  16. J. Bredenbeck, J. Helbing, and P. Hamm, “Labeling vibrations by light: ultrafast transient 2D-IR spectroscopy tracks vibrational modes during photoinduced charge transfer,” J. Am. Chem. Soc. 126, 990–991 (2004). [CrossRef] [PubMed]
  17. C. Kolano, J. Helbing, M. Kozinski, W. Sander, and P. Hamm, “Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy,” Nature 444, 469–472(2006). [CrossRef] [PubMed]
  18. R. Kania, A. I. Stewart, I. P. Clark, G. M. Greetham, A. W. Parker, M. Towrie, and N. T. Hunt, “Investigating the vibrational dynamics of a 17e- metallocarbonyl intermediate using ultrafast two dimensional infrared spectroscopy,” Phys. Chem. Chem. Phys. 12, 1051–1063 (2010). [CrossRef] [PubMed]
  19. C. R. Baiz, M. J. Nee, R. McCanne, and K. J. Kubarych, “Ultrafast nonequilibrium Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 33, 2533–2535 (2008). [CrossRef] [PubMed]
  20. W. Xiong, J. E. Laaser, P. Paoprasert, R. A. Franking, R. J. Hamers, P. Gopalan, and M. T. Zanni, “Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films,” J. Am. Chem. Soc. 131, 18040–18041 (2009). [CrossRef] [PubMed]
  21. H. S. Chung, Z. Ganim, K. C. Jones, and A. Tokmakoff, “Transient 2D IR spectroscopy of ubiquitin unfolding dynamics,” Proc. Natl. Acad. Sci, U.S.A. 104, 14237–14242 (2007). [CrossRef] [PubMed]
  22. H. S. Chung, M. Khalil, A. W. Smith, and A. Tokmakoff, “Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics,” Rev. Sci. Instrum. 78, 063101 (2007). [CrossRef] [PubMed]
  23. E. R. Andresen and P. Hamm, “Site-specific difference 2D-IR spectroscopy of Bacteriorhodopsin,” J. Phys. Chem. B 113, 6520–6527 (2009). [CrossRef] [PubMed]
  24. H. S. Chung, M. Khalil, A. W. Smith, Z. Ganim, and A. Tokmakoff, “Conformational changes during the nanosecond to millisecond unfolding of ubiquitin,” Proc. Natl. Acad. Sci. USA 102, 612–617(2005). [CrossRef] [PubMed]
  25. C. R. Baiz, R. McCanne, and K. J. Kubarych, “Transient vibrational echo versus transient absorption spectroscopy: a direct experimental and theoretical comparison,” Appl. Spectrosc. 64, 1037–1044 (2010). [CrossRef] [PubMed]
  26. K. C. Jones, Z. Ganim, and A. Tokmakoff, “Heterodyne-detected dispersed vibrational echo spectroscopy,” J. Phys. Chem. A 113, 14060–14066 (2009). [CrossRef] [PubMed]
  27. Although the transient absorption signal is formally 3rd order, here we take a phenomenological approach in which the T-jump pulse is not considered in the nonlinear spectral response.
  28. J. Wang and M. A. El-Sayed, “Temperature jump-induced secondary structural change of the membrane protein bacteriorhodopsin in the premelting temperature region: a nanosecond time-resolved fourier transform infrared study,” Biophys. J. 76, 2777–2783 (1999). [CrossRef] [PubMed]
  29. S. Williams, T. P. Causgrove, R. Gilmanshin, K. S. Fang, R. H. Callender, W. H. Woodruff, and R. B. Dyer, “Fast events in protein folding: helix melting and formation in a small peptide,” Biochemistry 35, 691–697 (1996). [CrossRef] [PubMed]
  30. C.-Y. Huang, J. W. Klemke, Z. Getahun, W. F. DeGrado, and F. Gai, “Temperature-dependent helix-coil transition of an alanine based peptide,” J. Am. Chem. Soc. 123, 9235–9238 (2001). [CrossRef] [PubMed]
  31. K. Hauser, C. Krejtschi, R. Huang, L. Wu, and T. A. Keiderling, “Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature-jump IR spectroscopy and isotopic labeling,” J. Am. Chem. Soc. 130, 2984–2992 (2008). [CrossRef] [PubMed]
  32. H. Ma, J. Ervin, and M. Gruebele, “Single-sweep detection of relaxation kinetics by submicrosecond midinfrared spectroscopy,” Rev. Sci. Instrum. 75, 486–491 (2004). [CrossRef]
  33. A. W. Smith, J. Lessing, Z. Ganim, C. S. Peng, A. Tokmakoff, S. Roy, T. L. C. Jansen, and J. Knoester, “Melting of a β-hairpin peptide using isotope-edited 2D IR spectroscopy and simulations,” J. Phys. Chem. B 114, 10913–10924 (2010). [CrossRef] [PubMed]
  34. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional fourier transform electronic spectroscopy,” J. Chem. Phys. 115, 6606–6622 (2001). [CrossRef]
  35. N. Belabas and D. M. Jonas, “Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry,” J. Opt. Soc. Am. B 22, 655–674(2005). [CrossRef]
  36. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126, 044511 (2007). [CrossRef] [PubMed]
  37. S. Ham, J.-H. Kim, H. Lee, and M. Cho, “Correlation between electronic and molecular structure distortions and vibrational properties. II. amide I modes of NMA-nD2O complexes,” J. Chem. Phys. 118, 3491–3498 (2003). [CrossRef]
  38. Adam W. Smith and A. Tokmakoff, “Probing local structural events in β-hairpin unfolding with transient nonlinear infrared spectroscopy,” Angew. Chem.. Int. Ed. Engl., Suppl. 46, 7984–7987 (2007). [CrossRef]
  39. K. E. Amunson and J. Kubelka, “On the temperature dependence of amide I frequencies of peptides in solution,” J. Phys. Chem. B 111, 9993–9998 (2007). [CrossRef] [PubMed]
  40. J. Kaminsky, P. Bour, and J. Kubelka, “Simulations of the temperature dependence of the amide I vibration,” J. Phys. Chem. A 115, 30–34 (2011). [CrossRef]
  41. R. M. Ballew, J. Sabelko, and M. Gruebele, “Direct observation of fast protein folding: the initial collapse of apomyoglobin,” Proc. Natl. Acad. Sci. U.S.A. 93, 5759–5764 (1996). [CrossRef] [PubMed]
  42. C. D. Snow, L. Qiu, D. Du, F. Gai, S. J. Hagen, and V. S. Pande, “Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy,” Proc. Natl. Acad. Sci. USA 101, 4077–4082 (2004). [CrossRef] [PubMed]
  43. N. Demirdöven, C. M. Cheatum, H. S. Chung, M. Khalil, J. Knoester, and A. Tokmakoff, “Two-dimensional infrared spectroscopy of antiparallel β-sheet secondary structure,” J. Am. Chem. Soc. 126, 7981–7990 (2004). [CrossRef] [PubMed]
  44. A. Barth and C. Zscherp, “What vibrations tell us about proteins,” Q. Rev. Biophys. 35, 369–430 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited