OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation

Hans U. Stauffer, Sukesh Roy, Waruna D. Kulatilaka, and James R. Gord  »View Author Affiliations

JOSA B, Vol. 29, Issue 1, pp. 40-52 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The theoretical framework for calculation of two-photon absorption cross sections for intermediate Hund’s cases (a) and (b) diatomic species is described in detail and applied toward the hydroxyl (OH) radical. Analytical expressions are derived for the 20 rotational branches that are present in the two-photon A Σ + 2 X Π 2 electronic transition. Calculation of the corresponding line strengths is necessary to permit accurate relative-concentration measurements obtained from the fluorescence induced by a broadband femtosecond excitation pulse. We demonstrate, in particular, that consideration of the temperature-dependent initial-state populations of OH is necessary to obtain accurate relative concentrations from observed two-photon-excitation based laser-induced-fluorescence measurements.

© 2011 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:

Original Manuscript: July 12, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 17, 2011
Published: December 9, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Hans U. Stauffer, Sukesh Roy, Waruna D. Kulatilaka, and James R. Gord, "Detailed calculation of hydroxyl (OH) radical two-photon absorption via broadband ultrafast excitation," J. Opt. Soc. Am. B 29, 40-52 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  2. S. Kostka, S. Roy, P. J. Lakusta, T. R. Meyer, M. W. Renfro, J. R. Gord, and R. Branam, “Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH,” Appl. Opt. 48, 6332–6343 (2009). [CrossRef] [PubMed]
  3. J. D. Miller, M. Slipchenko, T. R. Meyer, N. B. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009). [CrossRef] [PubMed]
  4. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor,” Combust. Flame 157, 1510–1525 (2010). [CrossRef]
  5. C. Heeger, R. L. Gordon, M. J. Tummers, T. Sattelmayer, and A. Dreizler, “Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation,” Exp. Fluids 49, 853–863 (2010). [CrossRef]
  6. N. B. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Development of high-repetition rate CH PLIF imaging in turbulent non-premixed flames,” Proc. Combust. Inst. 33, 767–774(2011). [CrossRef]
  7. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of ultrafast lasers for optical measurements in combusting flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008). [CrossRef]
  8. P. Beaud, P. P. Radi, D. Franzke, H. M. Frey, B. Mischler, A. P. Tzannis, and T. Gerber, “Picosecond investigation of the collisional deactivation of OH A∑+2 (v′=1, N′=4, 12) in an atmospheric-pressure flame,” Appl. Opt. 37, 3354–3367 (1998). [CrossRef]
  9. M. W. Renfro, W. A. Guttenfelder, G. B. King, and N. M. Laurendeau, “Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: OH,” Combust. Flame 123, 389–401 (2000). [CrossRef]
  10. M. S. Klassen, B. D. Thompson, T. A. Reichardt, G. B. King, and N. M. Laurendeau, “Flame concentration measurements using picosecond time-resolved laser-induced fluorescence,” Combust. Sci. Technol. 97, 391–403 (1994). [CrossRef]
  11. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001). [CrossRef]
  12. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006). [CrossRef]
  13. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009). [CrossRef] [PubMed]
  14. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering spectroscopy of N2 using a shaped 7 fs laser pulse,” Appl. Phys. Lett. 95, 074102 (2009). [CrossRef]
  15. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010). [CrossRef]
  16. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010). [CrossRef] [PubMed]
  17. H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2,” Appl. Opt. 50, A38–A48 (2011). [CrossRef] [PubMed]
  18. H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation,” Opt. Lett. 36, 1776–1778 (2011). [CrossRef] [PubMed]
  19. A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman-spectroscopy and coherent stokes Raman-spectroscopy with arbitrary pump Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986). [CrossRef] [PubMed]
  20. Z. S. Li, J. Kiefer, J. Zetterberg, M. Linvin, A. Leipertz, X. S. Bai, and M. Aldén, “Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames,” Proc. Combust. Inst. 31, 727–735 (2007). [CrossRef]
  21. J. Kiefer, Z. S. Li, T. Seeger, A. Leipertz, and M. Aldén, “Planar laser-induced fluorescence of HCO for instantaneous flame front imaging in hydrocarbon flames,” Proc. Combust. Inst. 32, 921–928 (2009). [CrossRef]
  22. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005). [CrossRef]
  23. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005). [CrossRef] [PubMed]
  24. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007). [CrossRef] [PubMed]
  25. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010). [CrossRef]
  26. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001). [CrossRef] [PubMed]
  27. D. R. Crosley and G. P. Smith, “Two-photon spectroscopy of the A∑+2–X2Πi system of OH,” J. Chem. Phys. 79, 4764–4773(1983). [CrossRef]
  28. R. G. Bray and R. M. Hochstrasser, “Two-photon absorption by rotating diatomic molecules,” Mol. Phys. 31, 1199–1211(1976). [CrossRef]
  29. J. T. Hougen, The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules, NBS Monograph 115 (National Institute of Standards and Technology, 1970). [PubMed]
  30. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  31. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740(2005). [CrossRef] [PubMed]
  32. R. N. Zare, Angular Momentum (Wiley, 1988).
  33. J. H. Van Vleck, “On σ-type doubling and electron spin in the spectra of diatomic molecules,” Phys. Rev. 33, 467–506 (1929). [CrossRef]
  34. R. S. Mulliken and A. Christy, “Λ-type doubling and electron configurations in diatomic molecules,” Phys. Rev. 38, 87–119(1931). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited