OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers

Se-Heon Kim, Jingqing Huang, and Axel Scherer  »View Author Affiliations

JOSA B, Vol. 29, Issue 4, pp. 577-588 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide a numerical study showing that a bottom reflector is indispensable to achieve unidirectional emission from a photonic-crystal (PhC) nanolaser. First, we study a PhC slab nanocavity suspended over a flat mirror formed by a dielectric or metal substrate. We find that the laser’s vertical emission can be enhanced by more than a factor of 6 compared with the device in the absence of the mirror. Then, we study the situation where the PhC nanocavity is in contact with a flat metal surface. The underlying metal substrate may serve as both an electrical current pathway and a heat sink, which would help achieve continuous-wave lasing operation at room temperature. The design of the laser emitting at 1.3 μm reveals that a relatively high cavity Q of over 1000 is achievable assuming room-temperature gold as a substrate. Furthermore, linearly polarized unidirectional vertical emission with the radiation efficiency over 50% can be achieved. Finally, we discuss how this hybrid design relates to various plasmonic cavities and propose a useful quantitative measure of the degree of the “plasmonic” character in a general metallic nanocavity.

© 2012 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(240.6680) Optics at surfaces : Surface plasmons
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 1, 2011
Revised Manuscript: December 1, 2011
Manuscript Accepted: December 2, 2011
Published: March 9, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Se-Heon Kim, Jingqing Huang, and Axel Scherer, "From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers," J. Opt. Soc. Am. B 29, 577-588 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  2. J.-M. Gérard and B. Gayral, “Strong Purcell effect for inas quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999). [CrossRef]
  3. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992). [CrossRef]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  6. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Princeton University, 2008).
  7. P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  8. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991). [CrossRef]
  9. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef]
  10. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003). [CrossRef]
  11. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Utra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  12. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  13. O. Painter, J. Vučkovič, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999). [CrossRef]
  14. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999). [CrossRef]
  15. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006). [CrossRef]
  16. U. K. Khankhoje, S.-H. Kim, B. C. Richards, J. Hendrickson, J. Sweet, J. D. Olitzky, G. Khitrova, H. M. Gibbs, and A. Scherer, “Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics,” Nanotechnology 21, 065202 (2010). [CrossRef]
  17. E. A. Hinds, Cavity Quantum Electrodynamics (Academic, 1994).
  18. S.-H. Kim, M.-K. Seo, J.-Y. Kim, and Y.-H. Lee, “Effects of a bottom substrate on emission properties of a photonic crystal nanolaser,” in Proceedings of IEEE 19th International Conference on Indium Phosphide & Related Materials (IEEE, 2007), pp. 480–483.
  19. M. Toishi, D. Englund, A. Faraon, and J. Vučković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17, 14618–14626 (2009). [CrossRef]
  20. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004). [CrossRef]
  21. M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90, 171122 (2007). [CrossRef]
  22. T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17, 12564–12570 (2009). [CrossRef]
  23. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011). [CrossRef]
  24. C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Lateral current injection photonic crystal membrane light emitting diodes,” J. Vac. Sci. Technol. B 28, 359–364 (2010). [CrossRef]
  25. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007). [CrossRef]
  26. S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolasers,” in Proceedings of 11th International IEEE Conference on Transparent Optical Networks (IEEE, 2009), pp. 1–4.
  27. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: creating magnetic emitters in photonic crystals,” Appl. Phys. Lett. 82, 1069–1071 (2003). [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  30. J. P. Dowling, M. O. Scully, and F. DeMartini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991). [CrossRef]
  31. B. B. Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. D. Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]
  32. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63, 125107 (2001). [CrossRef]
  33. J.-H. Kang, M.-K. Seo, S.-K. Kim, S.-H. Kim, M.-K. Kim, H.-G. Park, K.-S. Kim, and Y.-H. Lee, “Polarized vertical beaming of an engineered hexapole mode laser,” Opt. Express 17, 6074–6081 (2009). [CrossRef]
  34. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polarition whispering-gallery microcavity,” Nature (London) 457, 455–458 (2009). [CrossRef]
  35. R. F. Oulton, V. J. Sorger, T. Zentgaraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009). [CrossRef]
  36. M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9, 4078–4082 (2009). [CrossRef]
  37. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef]
  38. J. Huang, S.-H. Kim, and A. Scherer, “Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum,” Opt. Express 18, 19581–19591 (2010). [CrossRef]
  39. M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B 27, B36–B44 (2010). [CrossRef]
  40. S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009). [CrossRef]
  41. S.-W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34, 91–93 (2009). [CrossRef]
  42. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  43. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16, 448–455 (2008). [CrossRef]
  44. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  45. M. Ibanescu, S. G. Johnson, D. Roundy, Y. Fink, and J. D. Joannopoulos, “Microcavity confinement based on an anomalous zero group-velocity waveguide mode,” Opt. Lett. 30, 552–554 (2005). [CrossRef]
  46. S.-H. Kim, J. Huang, and A. Scherer, “A photonic crystal nanocavity laser in an optically very thick slab,” http://arxiv.org/abs/1111.4272 .
  47. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002). [CrossRef]
  48. H. Altug, D. Englund, and J. Vučković, “Ultra-fast photonic crystal nanolasers,” Nat. Phys. 2, 484–488 (2006). [CrossRef]
  49. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999). [CrossRef]
  50. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009). [CrossRef]
  51. W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19, 3925–3936 (2011). [CrossRef]
  52. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature (London) 455, 376–379 (2008). [CrossRef]
  53. H.-J. Chang, S.-H. Kim, Y.-H. Lee, E. P. Kartalov, and A. Scherer, “A photonic-crystal optical antenna for extremely large local-field enhancement,” Opt. Express 18, 24163–24177 (2010). [CrossRef]
  54. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  55. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature (London) 460, 367–370 (2009). [CrossRef]
  56. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  57. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef]
  58. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).
  59. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” http://arxiv.org/abs/1006.3126 .
  60. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritions,” Rep. Prog. Phys. 70, 1–87 (2007). [CrossRef]
  61. A. M. Lakhani, M. ki Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19, 18237–18245 (2011). [CrossRef]
  62. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited