OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Enabling two-dimensional optical subdiffraction imaging at an extended working distance: a planar antenna-array approach

Yan Wang, Amr S. Helmy, and George V. Eleftheriades  »View Author Affiliations

JOSA B, Vol. 29, Issue 5, pp. 1119-1124 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a practical optical probe configuration capable of two-dimensional subdiffraction imaging beyond the conventionally used near-field range. The probe consists of a planar array of plasmonic monopoles radiating with different amplitudes and phases, such that the near-field interaction of the array elements produces a subdiffraction spot size 40% smaller than the diffraction limit at a quarter-wavelength away from the probe. Although designed to operate in the visible, this topology is scalable to other spectra as well. Our proposed configuration could alleviate the “working distance” issue between the object and imaging apparatus since it enables superresolution focusing at relatively long distances while being compatible with existing near-field imaging setups, such as scanning near-field optical microscopes.

© 2012 Optical Society of America

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: January 12, 2012
Revised Manuscript: February 28, 2012
Manuscript Accepted: February 28, 2012
Published: April 30, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Yan Wang, Amr S. Helmy, and George V. Eleftheriades, "Enabling two-dimensional optical subdiffraction imaging at an extended working distance: a planar antenna-array approach," J. Opt. Soc. Am. B 29, 1119-1124 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004). [CrossRef]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  3. A. K. Iyer and G. V. Eleftheriades, “Mechanisms of subdiffraction free-space imaging using a transmission-line metamaterial superlens: an experimental verification,” Appl. Phys. Lett. 92, 131105 (2008). [CrossRef]
  4. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992). [CrossRef]
  5. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007). [CrossRef]
  6. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320, 511–513 (2008). [CrossRef]
  7. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101, 113901 (2008). [CrossRef]
  8. Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, and G. V. Eleftheriades, “Plasmonic meta-screen for alleviating the trade-offs in the near-field optics,” Opt. Express 17, 12351–12361 (2009). [CrossRef]
  9. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102, 207402 (2009). [CrossRef]
  10. T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, “A monopole antenna at optical frequencies: single-molecule near-field measurements,” IEEE Trans. Antennas Propag. 55, 3010–3017 (2007). [CrossRef]
  11. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field end-fire antenna-array probe,” IEEE Antennas Wirel. Propag. Lett. 8, 1025–1028 (2009). [CrossRef]
  12. L. Markley and G. V. Eleftheriades, “Two-dimensional subwavelength-focused imaging using a near-field probe at a λ/4 working distance,” J. Appl. Phys. 107, 093102 (2010). [CrossRef]
  13. T. H Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, “Near-field driving of a optical monopole antenna,” J. Opt. Pure Appl. Opt. 9S315–S321 (2007). [CrossRef]
  14. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef]
  15. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008). [CrossRef]
  16. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed. (Wiley, 2004).
  17. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  18. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009). [CrossRef]
  19. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11, 1201–1207 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited