OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle complex in the presence of optical excitations

Yong He, Jin-Jin Li, and Ka-Di Zhu  »View Author Affiliations


JOSA B, Vol. 29, Issue 5, pp. 997-1002 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000997


View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the optical response of a hybrid nanocrystal complex composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) in the presence of laser fields within a full quantum description. The analytic results demonstrate that the modified decay rate of the exciton is related to the exciton energy and the distance between SQD and MNP in terms of a quantum transformation method. The responses of the coupled system to a weak laser field and a strong laser field are demonstrated. When the two laser fields are presented simultaneously, the energy absorption rate of the coupled system to the weak laser field can be controlled by the strong laser field and the distance between SQD and MNP. This tunable optical response in such a hybrid system can be exploited for the development of the optical processing devices such as ultrafast optical switch in the future.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.0270) Quantum optics : Quantum optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 28, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 9, 2012
Published: April 18, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Yong He, Jin-Jin Li, and Ka-Di Zhu, "A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle complex in the presence of optical excitations," J. Opt. Soc. Am. B 29, 997-1002 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-29-5-997


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004). [CrossRef]
  2. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). [CrossRef]
  3. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007). [CrossRef]
  4. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008). [CrossRef]
  5. M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004). [CrossRef]
  6. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005). [CrossRef]
  7. A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011). [CrossRef]
  8. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006). [CrossRef]
  10. U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008). [CrossRef]
  11. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010). [CrossRef]
  12. B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011). [CrossRef]
  13. A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011). [CrossRef]
  14. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003). [CrossRef]
  15. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007). [CrossRef]
  16. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011). [CrossRef]
  17. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405(2011). [CrossRef]
  18. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008). [CrossRef]
  19. M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011). [CrossRef]
  20. R. Loudon, The Quantum Theory of Light (Oxford University, 2000).
  21. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  22. F. J. G. De Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010). [CrossRef]
  23. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006). [CrossRef]
  24. Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93, 166108 (2004). [CrossRef]
  25. D. J. Nesbitt and V. Fomenko, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8, 287–293 (2008). [CrossRef]
  26. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  27. Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited