OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Raman scattering near metal nanostructures

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus  »View Author Affiliations

JOSA B, Vol. 29, Issue 8, pp. 2035-2045 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (831 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study Raman scattering in active media placed in proximity to different types of metal nanostructures, at wavelengths that display either Fabry–Perot or plasmonic resonances, or a combination of both. We use a semiclassical approach to derive equations of motion for Stokes and anti-Stokes fields that arise from quantum fluctuations. Our calculations suggest that local field enhancement yields Stokes and anti-Stokes conversion efficiencies between 5 and 7 orders of magnitudes larger compared to cases without the metal nanostructure. We also show that to first order in the linear susceptibility the local field correction induces a dynamic, intensity-dependent frequency detuning that at high intensities tends to quench Raman gain.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(240.6680) Optics at surfaces : Surface plasmons
(270.0270) Quantum optics : Quantum optics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: May 9, 2012
Revised Manuscript: June 15, 2012
Manuscript Accepted: June 15, 2012
Published: July 18, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, "Raman scattering near metal nanostructures," J. Opt. Soc. Am. B 29, 2035-2045 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Eckardt, R. W. Hellwarth, F. J. McClung, S. E. Scharz, D. Weiner, and E. J. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962). [CrossRef]
  2. N. Bloembergen and Y. R. Shen, “Coupling between vibrations and light waves in Raman laser media,” Phys. Rev. Lett. 12, 504–507 (1964). [CrossRef]
  3. M. Raymer, K. RzaCewski, and J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett. 7, 71–73 (1982). [CrossRef]
  4. S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Beam pointing fluctuations in gain-guided amplifiers,” Phys. Rev. Lett. 66, 2605–2608 (1991). [CrossRef]
  5. I. Walmsley, “Quantum noise limit to the beam-pointing stability in stimulated Raman generation,” J. Opt. Soc. Am. B 8, 805–812 (1991). [CrossRef]
  6. M. Scalora, J. W. Haus, and C. M. Bowden, “Macroscopic quantum fluctuations in high-gain optical amplifiers,” Phys. Rev. Lett. 69, 3310–3313 (1992). [CrossRef]
  7. J. R. Ackerhalt and P. W. Milonni, “Solitons in four-wave mixing,” Phys. Rev. A 33, 3185–3198 (1986). [CrossRef]
  8. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  9. M. Nevière and R. Reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering,” Phys. Rev. B 46, 5403–5408 (1982). [CrossRef]
  10. T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” TrAC Trends Anal. Chem. 17, 557–582 (1998). [CrossRef]
  11. H. Nakai and H. Nakatsuji, “Electronic mechanism of the surface enhanced Raman scattering,” J. Chem. Phys. 103, 2286–2294 (1995). [CrossRef]
  12. C. Cappelli, S. Corni, and J. Tomasi, “Electronic and vibrational dynamic solvent effects on Raman spectra,” J. Chem. Phys. 115, 5531–5535 (2001). [CrossRef]
  13. S. Corni and J. Tomasi, “Surface enhanced Raman scattering from a single molecule absorbed on a metal particle aggregate: a theoretical study,” J. Chem. Phys. 116, 1156–1164, (2002). [CrossRef]
  14. J. J. Baumberg, N. Perney, M. E. Zoorob, M. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14, 847–857 (2006). [CrossRef]
  15. M. I. Mishchenko, “Electromagnetic scattering by nonspherical particles: a tutorial review,” J. Quant. Spectrosc. Radiat. Trans. 110, 808–832 (2009). [CrossRef]
  16. G. P. Wiederrecht, G. A. Wurtz, and A. Bouhelier, “Ultrafast hybrid plasmonics,” Chem. Phys. Lett. 461, 171–179 (2008). [CrossRef]
  17. X. Wei, L. Zhang, J. Zhang, X. Hu, and L. Sun, “A comparison of surface enhanced Raman scattering property between silver electrodes and periodical silver nanowire arrays,” Appl. Surf. Science 255, 6612–6614 (2009). [CrossRef]
  18. T. Vo-Dinh, “SERS chemical sensors and biosensors: new tools for environmental and biological analysis,” Sens. Actuators B 29, 183–189 (1995). [CrossRef]
  19. A. Campion and P. Kambhampati, “Surface enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998). [CrossRef]
  20. Z. Zhuang, X. Shang, X. Wang, W. Ruan, and B. Zhao, “Density functional theory study on surface enhanced Raman scattering of 4,4’-azopyridine on silver,” Spectrochim. Acta, Part A 72, 954–958 (2009). [CrossRef]
  21. A. F. Koenderink, R. Waele, and A. Polman, “Dispersion and scattering of resonant nanoparticle chains,” in Photonic Metamaterials: From Random to Periodic (META) (Optical Society of America, 2006), pp. 1–3.
  22. L. Gunnarsson, E. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kall, “Interparticle coupling effects in nanofabricated substrates for surface enhance Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001). [CrossRef]
  23. A. Kocabas, G. Ertas, S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface enhanced Raman scattering,” Opt. Express 16, 12469–12473 (2008). [CrossRef]
  24. M. M. Dvoynenko and J. Wang, “Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering,” Opt. Lett. 32, 3552–3554 (2007). [CrossRef]
  25. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  26. Y. J. Liu, Z. Y. Zhang, Q. Zhao, and Y. P. Zhao, “Revisiting the separation dependent surface enhance Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008). [CrossRef]
  27. M. Baia, L. Baia, S. Astilean, and J. Popp, “Surface enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings,” Appl. Phys. Lett. 88, 143121 (2006). [CrossRef]
  28. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17, 1806–1816 (2009). [CrossRef]
  29. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009). [CrossRef]
  30. R. Zhilong, S. Vo, and J. S. Harris, “A review of progress on nano-aperture VCSEL,” Chin. Opt. Lett. 6, 748–754 (2008). [CrossRef]
  31. C. H. Gan, G. Gbur, and T. D. Visser, “A new role for surface plasmons,” Opt. Photon. News 18, 36 (2007). [CrossRef]
  32. X. Juntao and M. Premaratne, “Analysis of the optical force dependency on beam polarization: dielectric/metallic spherical shell in a Gaussian beam,” J. Opt. Soc. Am. B 26, 973–980(2009). [CrossRef]
  33. A. S. Zelenina, R. Quidant, and M. N. Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007). [CrossRef]
  34. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004). [CrossRef]
  35. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151 (2011). [CrossRef]
  36. M. A. Vincenti, D. de Ceglia, V. Roppo, and M. Scalora, “Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths,” Opt. Express 19, 2064–2078 (2011). [CrossRef]
  37. L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons,” J. Phys. Chem. 129, 054704 (2008). [CrossRef]
  38. I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, “Observation of stimulated surface-enhanced Raman scattering through grating excitation of surface plasmons,” J. Opt. Soc. Am. B 13,656–660 (1996). [CrossRef]
  39. R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated Raman spectroscopy,” J. Phys. Chem. Lett. 2, 1199–1203 (2011). [CrossRef]
  40. R. R. Frontiera and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Laser Photon. Rev. 5, 102–113 (2011). [CrossRef]
  41. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461–488 (2007). [CrossRef]
  42. P. Johansson, H. Xu, and M. Kall, “Surface-enhanced Raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B 72, 035427 (2005). [CrossRef]
  43. D. Y. Lei, A. Aubry, S. A. Maier, and J. B. Pendry, “Broadband non-focusing of light using kissing nanowires,” New J. Phys. 12, 093030 (2010). [CrossRef]
  44. A. S. Manka, M. Scalora, J. P. Dowling, and C. M. Bowden, “Pulse propagation in a Raman pumped, four-level medium that exhibits inversionless gain,” Opt. Commun. 115, 283–290 (1995). [CrossRef]
  45. M. Lax, “Quantum noise. IV: Quantum theory of noise sources,” Phys. Rev. 145, 110–129 (1966). [CrossRef]
  46. J. C. Englund and C. M. Bowden, “Spontaneous generation of Raman solitons from quantum noise,” Phys. Rev. Lett. 57, 2661–2663 (1986). [CrossRef]
  47. J. C. Englund and C. M. Bowden, “Spontaneous generation of phase waves and solitons in stimulated Raman scattering: quantum-mechanical model of stimulated Raman scattering,” Phys. Rev. A 42, 2870–2889 (1990). [CrossRef]
  48. J. C. Englund and C. M. Bowden, “Spontaneous generation of phase waves and solitons in stimulated Raman scattering II: quantum statistics of Raman soliton generation,” Phys. Rev. A 46, 578–591 (1992). [CrossRef]
  49. R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 10.
  50. D. Bhandari, “Surface-enhanced Raman scattering: Substrate development and applications in analytical detection,” Ph.D. dissertation (University of Tennessee, 2011).
  51. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999). [CrossRef]
  52. M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in one-dimensional photonic band gap structures,” Appl. Phys. B 60, S57–S61 (1995).
  53. M. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 2799–2803 (1996). [CrossRef]
  54. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, “Four-wave parametric interactions in a strongly driven two-level system,” Phys. Rev. A 24, 411–423 (1981). [CrossRef]
  55. S. Franzen, “Intrinsic limitations on the |E|4 dependence of the enhancement factor for surface enhanced Raman scattering,” J. Phys. Chem. C 113, 5912–5919 (2009). [CrossRef]
  56. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004). [CrossRef]
  57. N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface enhanced Raman scattering on a single nanometric aperture,” J. Phys. Chem. C 114, 16250–16256 (2010). [CrossRef]
  58. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1654 KB)     
» Media 2: MOV (1251 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited