OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Silicon quantum dot coated microspheres for microfluidic refractive index sensing

Yanyan Zhi, Torrey Thiessen, and Al Meldrum  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 51-56 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000051


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic resonances of optical microspheres—the so-called whispering gallery modes (WGMs)—can be used for refractometric sensing of surrounding fluids. Microspheres are attractive because they offer high sensitivity and can be utilized with fluorescent dyes or quantum dots. One issue with microspheres, however, is that they are difficult to integrate into microfluidic systems. Here, we develop a microfluidic structure that permits sensing applications using a single microsphere in a capillary. To achieve this, a microsphere formed on the end of a tapered fiber was first coated with fluorescent silicon quantum dots (QDs). The sphere was then inserted into a microcapillary and the fluorescence WGMs were monitored as different fluids were pumped through the channel. The sensitivity and detection limits for this sphere-in-a-capillary device were measured for several different QD film thicknesses and for two different microsphere sizes. Because of the relatively high-visibility mode structure, the sensitivity and detection limit can be defined by Fourier analysis of the free spectral range and WGM spectral shifts.

© 2012 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: August 28, 2012
Manuscript Accepted: October 10, 2012
Published: December 6, 2012

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Yanyan Zhi, Torrey Thiessen, and Al Meldrum, "Silicon quantum dot coated microspheres for microfluidic refractive index sensing," J. Opt. Soc. Am. B 30, 51-56 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-30-1-51

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited