OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Second-order optical coherence tomography: deeper and turbulence-free imaging

Amir Nevet, Tomer Michaeli, and Meir Orenstein  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 258-265 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The superior resolution of optical coherence tomography (OCT) with respect to alternative imaging modalities makes it highly attractive, and some of its applications are already in extensive clinical use. However, one of the major limitations of OCT is that the tomographic picture it generates is depth-limited to approximately 1 mm in most biological tissues. This is mainly due to the spatially turbulent nature of the tissue, which leads to scattering. Moreover, this technique is extremely sensitive to temporal variations in the medium. We show that insensitivity to temporal and spatial turbulence may be gained by replacing the linear detector with an ultrasensitive two-photon detector. These results have striking implications on the attainable penetration depth of optical imaging and on its sensitivity to sample motion.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(110.4500) Imaging systems : Optical coherence tomography
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Coherence and Statistical Optics

Original Manuscript: September 26, 2012
Manuscript Accepted: November 12, 2012
Published: January 4, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Amir Nevet, Tomer Michaeli, and Meir Orenstein, "Second-order optical coherence tomography: deeper and turbulence-free imaging," J. Opt. Soc. Am. B 30, 258-265 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987). [CrossRef]
  3. H. H. Gilgen, R. P. Novak, R. P. Salathé, W. Hodel, and P. Beaud, “Submillimeter optical reflectometry,” J. Lightwave Technol. 7, 1225–1233 (1989). [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. Puliafato, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  5. W. Geitzenauer, C. K. Hitzenberger, and U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol. 95, 171–177 (2011). [CrossRef]
  6. F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. Di Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010). [CrossRef]
  7. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17, 1010–1014 (2011). [CrossRef]
  8. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123, 458–463 (2004). [CrossRef]
  9. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007). [CrossRef]
  10. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurements of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  11. G. Hausler, and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  12. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  13. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004). [CrossRef]
  14. J. F. de Boer, and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002). [CrossRef]
  15. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  16. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef]
  17. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
  18. R. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 177, 1046–1048 (1956). [CrossRef]
  19. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). [CrossRef]
  20. J. Lavoie, R. Kaltenbaek, and K. J. Resch, “Quantum-optical coherence tomography with classical light,” Opt. Express 17, 3818–3825 (2009). [CrossRef]
  21. A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15, 8760–8769 (2007). [CrossRef]
  22. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nat. Phys. 5, 267–270 (2009). [CrossRef]
  23. J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002). [CrossRef]
  24. F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nat. Commun. 2, 425 (2011). [CrossRef]
  25. A. Nevet, A. Hayat, P. Ginzburg, and M. Orenstein, “Indistinguishable photon pairs from independent true chaotic sources,” Phys. Rev. Lett. 107, 253601 (2011). [CrossRef]
  26. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef]
  27. T. Kubo and T. Asakura, “Optical coherence tomography imaging: current status and future perspectives,” Cardiovasc. Interv. Ther. 25, 2–10 (2010). [CrossRef]
  28. S. M. Stengel, Y. Allemann, M. Zimmerli, E. Lipp, N. Kucher, P. Mohacsi, and C. Seiler, “Doppler tissue imaging for assessing left ventricular diastolic dysfunction in heart transplant rejection,” Heart 86, 432–437 (2001). [CrossRef]
  29. H. Lajunen, V. Torres-Company, J. Lancis, and A. T. Friberg, “Resolution-enhanced optical coherence tomography based on classical intensity interferometry,” J. Opt. Soc. Am. A 26, 1049–1054 (2009). [CrossRef]
  30. T. Michaeli and Y. C. Eldar, “Xampling at the rate of innovation,” IEEE Trans. Signal Process. 60, 1121–1133 (2012). [CrossRef]
  31. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004). [CrossRef]
  32. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef]
  33. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998). [CrossRef]
  34. R. Salem and T. E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Opt. Lett. 29, 1524–1526 (2004). [CrossRef]
  35. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics 2, 238–241 (2008). [CrossRef]
  36. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef]
  37. M. S. Handcock and M. L. Stein, “A Bayesian analysis of kriging,” Technometrics 35, 403–410 (1993). [CrossRef]
  38. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Quantitatively characterizing fluctuations of dielectric susceptibility of tissue with Fourier domain optical coherence tomography,” J. Opt. Soc. Am. A 27, 2588–2592 (2010). [CrossRef]
  39. P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near infrared,” Ph. D. dissertation (Department of Medical Physics and Bioengineering, University College London, 1993).
  40. R. E. Meyers, K. S. Deacon, and Y. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011). [CrossRef]
  41. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited