OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Single-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy

Jue Su, Ruxin Xie, Carey K. Johnson, and Rongqing Hui  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1671-1682 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001671


View Full Text Article

Enhanced HTML    Acrobat PDF (1530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting in a nonlinear optical fiber. Spectra of CH stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when spectroscopy is performed in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

© 2013 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6450) Spectroscopy : Spectroscopy, Raman
(320.1590) Ultrafast optics : Chirping
(190.4223) Nonlinear optics : Nonlinear wave mixing
(180.5655) Microscopy : Raman microscopy

ToC Category:
Spectroscopy

History
Original Manuscript: February 20, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 25, 2013
Published: May 27, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Jue Su, Ruxin Xie, Carey K. Johnson, and Rongqing Hui, "Single-fiber-laser-based wavelength tunable excitation for coherent Raman spectroscopy," J. Opt. Soc. Am. B 30, 1671-1682 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-30-6-1671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).
  2. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic, 1988).
  3. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  4. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef]
  5. J.-X. Chen and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and application,” J. Phys. Chem. B 108, 827–840 (2004). [CrossRef]
  6. F. Legare, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS endoscopy,” Opt. Express 14, 4427–4432 (2006). [CrossRef]
  7. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007). [CrossRef]
  8. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36, 2387–2389 (2011). [CrossRef]
  9. R. Hui and C. Johnson, “Laser system for photonic excitation investigation,” U.S. patent 7,525,724 (April28, 2009).
  10. P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser” Appl. Phys. Lett. 99, 181112 (2011). [CrossRef]
  11. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7, 518–524 (2001). [CrossRef]
  12. J. R. Unruh, E. S. Price, R. Gagliano, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006). [CrossRef]
  13. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt Lett. 11, 662–664 (1986).
  14. P. Adany, E. S. Price, C. K. Johnson, R. Zhang, and R. Hui, “Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator,” Rev. Sci. Instrum. 80, 033107 (2009). [CrossRef]
  15. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93, 201103 (2008). [CrossRef]
  16. A. F. Pegorarol, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009). [CrossRef]
  17. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B 110, 5854–5864 (2006). [CrossRef]
  18. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004). [CrossRef]
  19. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007). [CrossRef]
  20. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17, 20700–20706 (2009). [CrossRef]
  21. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010–21018 (2012). [CrossRef]
  22. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20, 4484–4493 (2012). [CrossRef]
  23. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37, 1652–1654 (2012). [CrossRef]
  24. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17, 3651–3658 (2009). [CrossRef]
  25. M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43, 637–643 (2012). [CrossRef]
  26. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform,” Opt. Lett. 34, 1363–1365 (2009). [CrossRef]
  27. K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90, 141116 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited