OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Pulse front distortions caused by primary aberrations

Zoltán L. Horváth, Balázs Major, Attila P. Kovács, and Zsolt Bor  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1853-1863 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A wave optical description of the effect of the primary aberrations on the temporal and spatial shape of an ultrashort pulse is presented. The calculations are based on the diffraction theory of aberrations investigated by Nijboer and Zernike, leading to an effective numerical treatment of Seidel aberrations. The explicit form of the recurrence relations for the coefficients of the circular polynomial expansion are published, as far as we know, for the first time. Comparisons between the results of wave optical and geometrical optical formulas are shown. The appearance of a boundary diffraction wave pulse, known from the aberration-free case, is also demonstrated.

© 2013 Optical Society of America

OCIS Codes
(220.1010) Optical design and fabrication : Aberrations (global)
(260.1960) Physical optics : Diffraction theory
(320.0320) Ultrafast optics : Ultrafast optics
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Optical Design and Fabrication

Original Manuscript: April 12, 2013
Manuscript Accepted: May 14, 2013
Published: June 13, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Zoltán L. Horváth, Balázs Major, Attila P. Kovács, and Zsolt Bor, "Pulse front distortions caused by primary aberrations," J. Opt. Soc. Am. B 30, 1853-1863 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000). [CrossRef]
  2. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78, 309–371 (2006). [CrossRef]
  3. S. Wang and Q. Gong, “Progress in femtochemistry and femtobiology,” Sci. China Phys. Mech. Astron. 54, 2103–2108 (2011). [CrossRef]
  4. S. E. Irvine, P. Dombi, G. Farkas, and A. Y. Elezzabi, “Influence of the carrier-envelope phase of few-cycle pulses on ponderomotive surface-plasmon electron acceleration,” Phys. Rev. Lett. 97, 146801 (2006). [CrossRef]
  5. P. Dombi, S. E. Irvine, P. Rácz, M. Lenner, N. Kroó, G. Farkas, A. Mitrofanov, A. Baltuška, T. Fuji, F. Krausz, and A. Y. Elezzabi, “Observation of few-cycle, strong-field phenomena in surface plasmon fields,” Opt. Express 18, 24206–24212 (2010). [CrossRef]
  6. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]
  7. C. Benedetti, P. Londrillo, T. V. Liseykina, A. Macchi, A. Sgattoni, and G. Turchetti, “Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario,” Nucl. Instrum. Methods Phys. Res. A 606, 89–93 (2009). [CrossRef]
  8. Y. T. Alvin, H. Gibbs, J. J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B 14, 119–131 (2008). [CrossRef]
  9. X. Peng, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt. 14, 014002 (2009). [CrossRef]
  10. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. S. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20, 90–99 (2009). [CrossRef]
  11. V. S. Yakovlev, P. Dombi, G. Tempea, C. Lemell, J. Burgdorfer, T. Udem, and A. Apolonski, “Phase-stabilized 4 fs pulses at the full oscillator repetition rate for a photoemission experiment,” Appl. Phys. B 76, 329–332 (2003). [CrossRef]
  12. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. D. Silvestri, and O. Svelto, “Generation of 3.8 fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003). [CrossRef]
  13. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9, 242 (2007). [CrossRef]
  14. Zs. Bor, “Distortion of femtosecond laser-pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907 (1988). [CrossRef]
  15. Zs. Bor, “Distortion of femtosecond pulse in lenses,” Opt. Lett. 14, 119–121 (1989). [CrossRef]
  16. Zs. Bor, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989). [CrossRef]
  17. Zs. Bor and Z. L. Horvath, “Distortion of femtosecond pulse in lenses. Wave optical description,” Opt. Commun. 94, 249–258 (1992). [CrossRef]
  18. Z. L. Horvath and Zs. Bor, “Focusing of femtosecond pulses having Gaussian spatial distribution,” Opt. Commun. 100, 6–12 (1993). [CrossRef]
  19. Z. L. Horvath and Zs. Bor, “Behaviour of femtosecond pulses on the optical axis of a lens. Analytical description,” Opt. Commun. 108, 333–342 (1994). [CrossRef]
  20. Zs. Bor and Z. L. Horvath, “How to select a lens for focusing of femtosecond pulses,” Braz. J. Phys. 26, 516–519 (1996).
  21. A. Federico and O. Martinez, “Distortion of femtosecond pulses due to chromatic aberration in lenses,” Opt. Commun. 91, 104–110 (1992). [CrossRef]
  22. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser-pulses by lenses and lens systems,” J. Opt. Soc. Am. B 9, 1158–1165 (1992). [CrossRef]
  23. D. Zalvidea, “Phase mask for spatial and temporal control of ultrashort light pulses focused by lenses,” J. Opt. Soc. Am. A 20, 1981–1986 (2003). [CrossRef]
  24. W. Amir, T. A. Planchon, C. G. Durfee, J. A. Squier, P. Gabolde, R. Trebino, and M. Müller, “Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry,” Opt. Lett. 31, 2927–2929 (2006). [CrossRef]
  25. H.-M. Heuck, P. Neumayer, T. Kuehl, and U. Wittrock, “Chromatic aberration in petawatt-class lasers,” Appl. Phys. B 84, 421–428 (2006). [CrossRef]
  26. M. Kempe and W. Rudolph, “Impact of chromatic and spherical-aberration on the focusing of ultrashort light-pulses by lenses,” Opt. Lett. 18, 137–139 (1993). [CrossRef]
  27. M. Kempe and W. Rudolph, “Femtosecond pulses in the focal region of lenses,” Phys. Rev. A 48, 4721–4729 (1993). [CrossRef]
  28. D. Zalvidea and E. E. Sicre, “Ultrashort light pulse propagation in aberrant optical systems: spatial–temporal analysis,” J. Opt. A 5S310 (2003). [CrossRef]
  29. G. O. Mattei and M. A. Gil, “Spherical aberration in spatial and temporal transforming lenses of femtosecond laser pulses,” Appl. Opt. 38, 1058–1064 (1999). [CrossRef]
  30. M. A. Gonzalez-Galicia, M. Rosete-Aguilar, J. Garduno-Mejia, N. C. Bruce, and R. Ortega-Martinez, “Effects of primary spherical aberration, coma, astigmatism and field curvature on the focusing of ultrashort pulses: homogenous illumination,” J. Opt. Soc. Am. A 28, 1979–1989 (2011). [CrossRef]
  31. M. A. Gonzalez-Galicia, J. Garduno-Mejia, M. Rosete-Aguilar, N. C. Bruce, and R. Ortega-Martinez, “Effects of primary spherical aberration, coma, astigmatism, and field curvature on the focusing of ultrashort pulses: Gaussian illumination and experiment,” J. Opt. Soc. Am. A 28, 1990–1994 (2011). [CrossRef]
  32. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15, 10219–10230 (2007). [CrossRef]
  33. P. Bowlan, U. Fuchs, R. Trebino, and U. D. Zeitner, “Measuring the spatiotemporal electric field of tightly focused ultrashort pulses with sub-micron spatial resolution,” Opt. Express 16, 13663–13675 (2008). [CrossRef]
  34. K. Mecseki, A. P. Kovács, and Z. L. Horváth, “Measurement of pulse front distortion caused by aberrations using spectral interferometry,” AIP Conf. Proc. 1228, 190–196 (2010). [CrossRef]
  35. C. Bourassin-Bouchet, S. de Rossi, F. Delmotte, and P. Chavel, “Spatiotemporal distortions of attosecond pulses,” J. Opt. Soc. Am. A 27, 1395–1403 (2010). [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics (Pergamon, 1987), Chap. 9.
  37. Z. L. Horvath, A. P. Kovacs, and Zs. Bor, “Distortion of ultrashort pulses caused by aberrations,” in 15th International Conference on Ultrafast Phenomena, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ThD16.
  38. A. Prata and W. V. T. Rusch, “Algorithm for computation of Zernike polynomials expansion coefficients,” Appl. Opt. 28, 749–754 (1989). [CrossRef]
  39. J. Lu and J. F. Greenleaf, “Nondiffracting X waves—exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992). [CrossRef]
  40. J. Fagerholm, A. T. Friberg, J. Huttunen, D. P. Morgan, and M. M. Salomaa, “Angular-spectrum representation of nondiffracting X waves,” Phys. Rev. E 54, 4347–4352 (1996). [CrossRef]
  41. P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997). [CrossRef]
  42. Z. L. Horvath and Zs. Bor, “Diffraction of short pulses with boundary diffraction wave theory,” Phys. Rev. E 63, 026601 (2001). [CrossRef]
  43. Z. L. Horvath, J. Klebniczki, G. Kurdi, and A. P. Kovács, “Experimental investigation of boundary wave pulse,” Opt. Commun. 239, 243–250 (2004). [CrossRef]
  44. P. Saari, P. Bowlan, H. Valtna-Lukner, M. Lõhmus, P. Piksarv, and R. Trebino, “Basic diffraction phenomena in time domain,” Opt. Express 18, 11083–11088 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited