OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors

Daquan Yang, Huiping Tian, Yuefeng Ji, and Qimin Quan  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2027-2031 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002027


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Sensitivities (S) and quality factors (Q) have been trade-offs in label-free optical resonator sensors, and optimal geometry that maximizes both factors is under active development. In this paper, we demonstrate that the nanoslotted parallel multibeam cavity possesses unexplored high S and high Q. We achieve S>800nm/RIU (refractive index unit) and Q>107 in liquid at telecom wavelength range when absorption is neglected. To the best of our knowledge, this is the first geometry that features both high S and Q factors, and thus is potentially an ideal platform for refractive index-based biochemical sensing.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: February 28, 2013
Revised Manuscript: June 5, 2013
Manuscript Accepted: June 5, 2013
Published: July 3, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Daquan Yang, Huiping Tian, Yuefeng Ji, and Qimin Quan, "Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors," J. Opt. Soc. Am. B 30, 2027-2031 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josab-30-8-2027


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  2. C. A. Barrios, M. Bauls, V. G. Pedro, K. B. Gylfason, B. Snchez, A. Griol, A. Maquieira, H. Sohlstrm, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008). [CrossRef]
  3. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  5. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17, 151–161 (2004). [CrossRef]
  6. C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011). [CrossRef]
  7. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011). [CrossRef]
  8. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007). [CrossRef]
  9. A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005). [CrossRef]
  10. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  11. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188–18193 (2008). [CrossRef]
  12. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009). [CrossRef]
  13. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95, 031102 (2009). [CrossRef]
  14. K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, F. Fornel, and E. Hadji, “An air-slotted nanoresonator relying on coupled high Q small V Fabry–Perot nanocavities,” Appl. Phys. Lett. 94, 251111 (2009). [CrossRef]
  15. B. Cluzel, K. Foubert, L. Lalouat, E. Picard, J. Dellinger, D. Peyrade, F. Fornel, and E. Hadji, “Optical field molding within near-field coupled twinned nanobeam cavities,” in Integrated Photonics Research, Silicon and Nanophotonics, Toronto, Canada, 12June, 2011.
  16. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]
  17. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011). [CrossRef]
  18. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010). [CrossRef]
  19. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  20. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1, 106–114 (2007). [CrossRef]
  21. J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P.-C. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82, 1143–1145 (2003). [CrossRef]
  22. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4651 (2003). [CrossRef]
  23. E. Chow, A. Grot, I. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004). [CrossRef]
  24. T. Xu and N. Zhu, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010). [CrossRef]
  25. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19, 22191–22197 (2011). [CrossRef]
  26. K. Yao and Y. Shi, “High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing,” Opt. Express 20, 27039–27044 (2012). [CrossRef]
  27. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18, 27930–27937 (2010). [CrossRef]
  28. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011). [CrossRef]
  29. W. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012). [CrossRef]
  30. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), Baltimore, Maryland, 1May, 2011.
  31. L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005). [CrossRef]
  32. S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096–2098 (2006). [CrossRef]
  33. C. A. Barrios, K. B. Gylfason, B. Snchez, A. Griol, H. Sohlstrm, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007). [CrossRef]
  34. K. de Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007). [CrossRef]
  35. C. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing ppplications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006). [CrossRef]
  36. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  37. Q. Quan, I. Bulu, and M. Loncar, “A broadband waveguide QED system on chip,” Phys. Rev. A 80, 011810(R) (2009). [CrossRef]
  38. F. DellOlio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007). [CrossRef]
  39. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008). [CrossRef]
  40. S. Kita, S. Hachuda, K. Nozaki, and T. Baba, “Nanoslot laser,” Appl. Phys. Lett. 97, 161108 (2010). [CrossRef]
  41. J. Jgersk, H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010). [CrossRef]
  42. M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011). [CrossRef]
  43. A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009). [CrossRef]
  44. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010). [CrossRef]
  45. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing,” Proc. SPIE 7946, 79461C (2011). [CrossRef]
  46. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006). [CrossRef]
  47. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited