OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 5 — Apr. 29, 2014

Focusing light within turbid media with weakly discriminating filters

W. James Tom and Andrew K. Dunn  »View Author Affiliations

JOSA B, Vol. 31, Issue 3, pp. 412-422 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (728 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many materials, including biological tissue, attenuate light mostly by scattering. Because the scattered field is exquisitely sensitive to perturbations, control over the distribution of light after strong scattering is challenging. Though wavefront-shaping techniques enable arbitrary generation of light distributions within strongly scattering or turbid media in principle, the input wavefront necessary for the chosen light distribution is generally unknown. Using two different computational models, we demonstrate a technique called virtual aperture culling of the eigenmodes of a resonator (VACER), which uses weak spatial filtering mechanisms for noninvasive light focusing at arbitrary positions within turbid media. Compatibility with weak spatial filtering mechanisms is critical to innocuously focusing light within turbid media. One model represents an ideal system and could be physically implemented in some scenarios with digital optical phase conjugation, while the other model simulates phase conjugation via gain saturation, and its physical realization would operate fast enough to avoid the effects of speckle decorrelation in biological tissue. Modeling results establish that sound physical principles underlie VACER.

© 2014 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.7050) Medical optics and biotechnology : Turbid media
(190.5040) Nonlinear optics : Phase conjugation
(290.7050) Scattering : Turbid media
(140.3325) Lasers and laser optics : Laser coupling
(140.3535) Lasers and laser optics : Lasers, phase conjugate

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 11, 2013
Revised Manuscript: December 17, 2013
Manuscript Accepted: December 17, 2013
Published: February 5, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

W. James Tom and Andrew K. Dunn, "Focusing light within turbid media with weakly discriminating filters," J. Opt. Soc. Am. B 31, 412-422 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]
  2. Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008). [CrossRef]
  3. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008). [CrossRef]
  4. I. M. Vellekoop, A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008). [CrossRef]
  5. M. Cui, E. J. McDowell, C. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett. 95, 123702 (2009). [CrossRef]
  6. M. Cui, E. J. McDowell, C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18, 25–30 (2010). [CrossRef]
  7. M. Cui, C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444–3455 (2010). [CrossRef]
  8. I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010). [CrossRef]
  9. X. Xu, H. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011). [CrossRef]
  10. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012). [CrossRef]
  11. F. Ramaz, B. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004). [CrossRef]
  12. P. Lai, X. Xu, L. V. Wang, “Ultrasound-modulated optical tomography at new depth,” J. Biomed. Opt. 17, 066006 (2012). [CrossRef]
  13. K. Si, R. Fiolka, M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012). [CrossRef]
  14. C. Gu, P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353–357 (1994). [CrossRef]
  15. S. Campbell, P. Yeh, C. Gu, Q. B. He, “Fidelity of image restoration by partial phase conjugation through multimode fibers,” Opt. Commun. 114, 50–56 (1995). [CrossRef]
  16. E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15, 025004 (2010). [CrossRef]
  17. K. Si, R. Fiolka, M. Cui, “Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy,” Sci. Rep. 2, 748 (2012). [CrossRef]
  18. W. J. Tom, “Focusing light within turbid media with virtual aperture culling of the eigenmodes of a resonator,” Ph.D. dissertation (University of Texas at Austin, 2012).
  19. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
  20. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Controlling light through optical disordered media: transmission matrix approach,” New J. Phys. 13, 123021 (2011). [CrossRef]
  21. M. Pozniak, K. Zyczkowski, M. Kus, “Composed ensembles of random unitary matrices,” J. Phys. A 31, 1059–1071 (1998). [CrossRef]
  22. L. Shampine, M. Reichelt, “The MATLAB ODE suite,” SIAM J. Sci. Comput. 18, 1–22 (1997). [CrossRef]
  23. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012). [CrossRef]
  24. R. Roy, P. A. Schulz, A. Walther, “Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser,” Opt. Lett. 12, 672–674 (1987). [CrossRef]
  25. M. K. Reed, W. K. Bischel, “Acousto-optic modulators as unidirectional devices in ring lasers,” Opt. Lett. 17, 691–693 (1992). [CrossRef]
  26. W. Clarkson, A. Neilson, D. Hanna, “Unidirectional operation of ring lasers via the acoustooptic effect,” IEEE J. Quantum Electron. 32, 311–325 (1996). [CrossRef]
  27. Y. Wang, N. Saito, H. Tashiro, “Unidirectional operation of a ring laser by means of anisotropic acousto-optic device,” Opt. Commun. 207, 279–285 (2002). [CrossRef]
  28. G. Lerosey, J. de Rosny, A. Tourin, M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120–1122 (2007). [CrossRef]
  29. E. G. van Putten, A. Lagendijk, A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B 28, 1200–1203 (2011). [CrossRef]
  30. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011). [CrossRef]
  31. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7, 454–458 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited