OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells

Philip J.W. Hands, Svetlana A. Tatarkova, Andrew K. Kirby, and Gordon D. Love  »View Author Affiliations


Optics Express, Vol. 14, Issue 10, pp. 4525-4537 (2006)
http://dx.doi.org/10.1364/OE.14.004525


View Full Text Article

Enhanced HTML    Acrobat PDF (509 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 µm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 µm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

© 2006 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Trapping

History
Original Manuscript: March 24, 2006
Revised Manuscript: May 3, 2006
Manuscript Accepted: May 4, 2006
Published: May 15, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Philip J. W. Hands, Svetlana A. Tatarkova, Andrew K. Kirby, and Gordon D. Love, "Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells," Opt. Express 14, 4525-4537 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-10-4525


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  2. J. Liesener, M. Reicherter, T. Haist and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  3. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810-1816 (2001). [CrossRef]
  4. J. E. Curtis, B. A. Koss and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  5. K. Dholakia, G. Spalding, and M. MacDonald, "Optical tweezers: the next generation," Phys. World 15, (2002).
  6. J. M. R. Fournier, M. M. Burns, and J. A. Golovchenko, "Writing diffractive structures by optical trapping," in Practical Holography IX, S. A. Benton, Proc. SPIE 2406, 101-111 (1995).
  7. J. Gluckstad and P. C. Mogensen, "Reconfigurable ternary-phase array illuminator based on the generalised phase contrast technique," Opt. Commun. 173, 169-175 (2000). [CrossRef]
  8. P. C. Mogensen and J. Gluckstad, "Dynamic array generation and pattern formation for optical tweezers," Opt. Commun. 175, 75-81 (2000). [CrossRef]
  9. R. L. Eriksen, P. C. Mogensen, and J. Gluckstad, "Multiple-beam optical tweezers generated by the generalized phase-contrast method," Opt. Lett. 27, 267-269 (2002). [CrossRef]
  10. P. J. Rodrigo, V. R. Daria, and J. Gluckstad, "Real-time three-dimensional optical micromanipiulation of multiple paticles and living cells," Opt. Lett. 29, 2270-2272 (2004). [CrossRef] [PubMed]
  11. P. J. Rodrigo, V. R. Daria, and J. Gluckstad, "Dynamically reconfigurable optical lattices," Opt. Express 13, 1384-1394 (2005). [CrossRef] [PubMed]
  12. M. Kawamura, M. Ye, and S. Sato, "Optical trapping and manipulation system using liquid-crystal lens with focussing and deflection properties," Jpn. J. Appl. Phys. 44, 6098-6100 (2005). [CrossRef]
  13. M. J. Lang, P. M. Fordyce, and S. M. Block, "Combined optical trapping and single-molecule fluororescence," J. Biol. 2, 6 (2003). [CrossRef]
  14. A. Ashkin and J. M. Dziedzic, "Observation of radiation-pressure trapping of particles by alternating light beams," Phys. Rev. Lett. 54, 1245-1248 (1984). [CrossRef]
  15. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-dimensional optically bound arrays of microscopic particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  16. P. J. Rodrigo, V. R. Daria, and J. Gluckstad, "Four-dimensional optical manipulation of colloidal particles," Appl. Phys. Lett. 86,074103 (2005). [CrossRef]
  17. G. D. Love, J. V. Major, and A. Purvis, "Liquid crystal prisms for tip-tilt adaptive optics," Opt. Lett. 19, 1170-1172 (1994). [PubMed]
  18. V. Laude and C. Dirson, "Liquid crystal active lens: application to image resolution enhancement," Opt. Commun,  163, 72-78 (1999). [CrossRef]
  19. M. A. A. Neil and R. Juskaitis, "Adaptive aberration correction in a two-photon microscope," J. Microsc. 200, 105-108 (2000). [CrossRef] [PubMed]
  20. M. Hain, R. Glockner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, "Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup," Opt. Commun. 188, 291-299 (2001). [CrossRef]
  21. M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006). [CrossRef]
  22. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. V. Vdovin, "Liquid-crystal adaptive lenses with modal control," Opt. Lett. 23, 992-994 (1998). [CrossRef]
  23. A. F. Naumov and G. D. Love, "Control optimisation of spherical modal liquid crystal lenses," Opt. Express 4, 344-352 (1999). [CrossRef] [PubMed]
  24. P. J. W. Hands, G. D. Love, and A. K. Kirby, "Adaptive modally addressed liquid crystal lenses," in Liquid Crystals VIII, I.-C. Khoo, Proc. SPIE 5188, 136-143 (2004). [CrossRef]
  25. A. K. Kirby, P. J. W. Hands, and G. D. Love, "Optical design of liquid crystal lenses: off-axis modelling," in Current Developments in Lens Design and Optical Engineering VI, P. Z. Mouroulis, W. J. Smith and R. B. Johnson, eds., Proc. SPIE 5874, 70-79 (2005).
  26. A. F. Fray and D. Jones, "Large-angle beam deflector using liquid crystals," Electron. Lett. 11, 358-359 (1975). [CrossRef]
  27. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, "High efficiency liquid crystal optical phased array beam steering," Opt. Lett. 21, 689-691 (1996). [CrossRef] [PubMed]
  28. M. Honma and T. Nose, "Liquid crystal blazed grating with azimuthally distributed liquid crystal directors," Appl. Opt. 43, 5193-5197 (2004). [CrossRef] [PubMed]
  29. S. Masuda, S. Takahashi, T. Nose, S. S. Ito, and H. Ito, "Liquid-crystal microlens with a beam-steering function," Appl. Opt. 36, 4772-4778 (1997). [CrossRef] [PubMed]
  30. T. Nose, Y. Yamada, and S. Sato, "Improvement of optical properties and beam steering functions in a liquid crystal microlens with an extra controlling electrode by a planar surface," Jpn. J. Appl. Phys.,  39, 6383-6387 (2000). [CrossRef]
  31. A. K. Kirby and G. D. Love, "Fast, large and controllable phase modulation using dual frequency liquid crystals," Opt. Express 12, 1470-1475 (2004). [CrossRef] [PubMed]
  32. Meadowlark Optics, www.meadowlark.com.
  33. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004). [CrossRef]
  34. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005). [CrossRef] [PubMed]
  35. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, "High-precision steering of multiple holographic optical traps," Opt. Express 13, 8678-8685 (2005). [CrossRef] [PubMed]
  36. T.-L. Kelly and G. D. Love, "White-light performance of a polarisation-independent liquid-crystal phase modulator," Appl. Opt. 38, 1986-1989 (1999). [CrossRef]
  37. G. D. Love, "Liquid crystal phase modulator for unpolarized light," Appl. Opt. 32, 2222-2223 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2580 KB)     
» Media 2: AVI (1131 KB)     
» Media 3: AVI (2272 KB)     
» Media 4: AVI (2546 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited