OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 6 — Jun. 13, 2006

Design optimization of nano-grating surface plasmon resonance sensors

Kyung Hun Yoon, Michael L. Shuler, and Sung June Kim  »View Author Affiliations


Optics Express, Vol. 14, Issue 11, pp. 4842-4849 (2006)
http://dx.doi.org/10.1364/OE.14.004842


View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we propose nano-grating surface plasmon resonance (NGSPR) sensors and show the design optimization process. NGSPR sensors with line width less than 50 nm show narrow reflection peaks from the excitation of localized surface plasmon polaritons. The wavelength of resonance reflection can be customized by adjusting the grating period. We predict that a refractive index sensitivity of more than 400 nm/RIU can be obtained using an optimized structure. Sharp reflection resonance peaks with FWHM of 0.03 eV will further enhance the sensitivity of the sensors. The simple optical configuration of normal incidence and high refractive index sensitivity make it possible for NGSPR sensors to be used as portable biosensors for high-throughput screening applications.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 31, 2006
Revised Manuscript: May 12, 2006
Manuscript Accepted: May 16, 2006
Published: May 29, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Kyung Hun Yoon, Michael L. Shuler, and Sung June Kim, "Design optimization of nano-grating surface plasmon resonance sensors," Opt. Express 14, 4842-4849 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-11-4842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  2. J.-M. Jung, Y.-B. Shin, M.-G. Kim, H.-S. Ro, H.-T. Jung, and B. H. Chung, "A fusion protein expression analysis using surface plasmon resonance imaging," Anal. Biochem. 330, 251-256 (2004). [CrossRef] [PubMed]
  3. J. M. Brockman, B. P. Nelson, and R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000). [CrossRef] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391,667-669 (1998). [CrossRef]
  5. K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  6. N. Nath and A. Chilkoti, "A colorimetric gold nanoparticle sensor to interrogate Biomolecular interactions in real time on a surface," Anal. Chem. 74, 504-509 (2002). [CrossRef] [PubMed]
  7. S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004). [CrossRef] [PubMed]
  8. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire- enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005). [CrossRef] [PubMed]
  9. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  10. S. Zou, N. Janel, and G. C. Schatz, "Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes," J. Chem. Phys. 120, 10871-10875 (2004). [CrossRef] [PubMed]
  11. A. G. Brolo, R. Gordon, B. Leatherm, and K. L. Kavanagh, "Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films," Langmuir 20, 4813-4815 (2004). [CrossRef]
  12. Y. G. Sun, and Y. N. Xia, "Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm," Analyst 128, 686-691 (2003). [CrossRef] [PubMed]
  13. M. Duval Malinsky, K. Lance Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with Alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001). [CrossRef]
  14. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface Plasmon Resonance Spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005). [CrossRef] [PubMed]
  15. J. Davies and I. Faulkner, Surface Analytical Techniques for Probing Biomaterial Processes (CRC Press, 1996), Chap. 3.
  16. E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of film over Nanowell surfaces fabricated by Nanosphere Lithographpy," J. Phys. Chem. B 109, 22351-22358 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited