OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography

Subhadra Srinivasan, Brian W. Pogue, Hamid Dehghani, Frederic Leblond, and Xavier Intes  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5394-5410 (2006)
http://dx.doi.org/10.1364/OE.14.005394


View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3-D) models of light propagation in diffuse optical tomography provide an accurate representation of scattering in tissue. Here the use of spectral priors, shown to improve quantification of functional parameters in 2-D, has been extended to 3-D. To make 3-D spectral imaging computationally tractable, a novel technique is presented to deal with the large data set. The basic principle consists of using a dynamic criterion to select optimal data subsets that capture the major changes in the imaging domain. Results from three test cases showed comparable image quality and accuracy with less than 4% difference between the uses of data subset approach versus the entire dataset. Tested on simulated data from two different models, the algorithm was able to discern multiple objects successfully with an average error of 30% in quantifying multiple regions and less than 1% in quantifying the background.

© 2006 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 5, 2006
Revised Manuscript: May 19, 2006
Manuscript Accepted: May 25, 2006
Published: June 12, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Subhadra Srinivasan, Brian W. Pogue, Hamid Dehghani, Frederic Leblond, and Xavier Intes, "Data subset algorithm for computationally efficient reconstruction of 3-D spectral imaging in diffuse optical tomography," Opt. Express 14, 5394-5410 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-12-5394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhang, T.J. Brukilacchio, A. Li, J.J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R.H. Moore, D.B. Kopans, and D.A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J Biomed. Opt. 10,024033-0240339 (2005). [CrossRef] [PubMed]
  2. Zhu, Q. , E.B. Cronin, A.A. Currier, H.S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology,  237(1): p. 57-66 (2005). [CrossRef]
  3. B. Brooksby, B.W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, J. Weaver, S.P. Poplack, and K.D. Paulsen, "Imaging Breast Adipose and Fibroglandular Tissue Molecular Signatures using Hybrid MRI-Guided Near-Infrared Spectral Tomography," Proceedings of the National Academy of Sciences (in press), (2006). [CrossRef]
  4. F. F. Jobsis, "Non-invasive, infra-red monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198,1264-1267 (1977). [CrossRef] [PubMed]
  5. J. S. Wyatt, "Cerebral oxygenation and haemodynamics in the foetus and newborn infant," Phil. Trnas. R. Soc. Lond. B,  352,697-700 (1997). [CrossRef]
  6. G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  7. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-66 (2002). [CrossRef] [PubMed]
  8. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia (New York),  2, 26-40 (2000). [CrossRef]
  9. B. W. Pogue, S. P. Poplack, T.O. McBride, W.A. Wells, O.K. S., U.L. Osterberg, and K.D. Paulsen, "Quantitative Hemoglobin Tomography with Diffuse Near-Infrared Spectroscopy: Pilot Results in the Breast," Radiology 218, 261-6 (2001). [PubMed]
  10. Gratton, E. , Fantini, S. , Franceschini, M. A. , Gratton, G.  and Fabiani, M. , "Measurements of scattering and absorption changes in muscle and brain," Phil. Trans. R. Soc. Lond. B 352, 727-735 (1997). [CrossRef]
  11. P. Van der Zee, M. Cope, S. R. Arridge, M. EssenpreisL. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds,  et al, "Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter-optode spacing," Adv. Expt. Med. Biol. 316, 143-53 (1992). [CrossRef]
  12. I. V. Meglinski and S. J. Matcher, "Computer simulation of the skin reflectance spectra," Computer Methods and Programs in Biomedicine 70, 179-186 (2003). [CrossRef] [PubMed]
  13. D. B. Jakubowski, A.E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B.J. Tromberg, "Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study," J Biomed. Opt. 9, 230-8 (2004). [CrossRef] [PubMed]
  14. P. Vaupel, K. F., and O. P., "Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review," Cancer Research 49, 6449-6465 (1989). [PubMed]
  15. S. Srinivasan, B.W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J.J. Gibson, T.D. Tosteson, S.P. Poplack, and K.D. Paulsen, "Interpreting hemoglobin and water concentration, oxygen saturation and scattering measured in vivo by near-infrared breast tomography," PNAS,  100(21): p. 12349-12354 (2003). [CrossRef]
  16. S. P. Poplack, A.N. Tosteson, M.R. Grove, W.A. Wells, and P.A. Carney, "Mammography in 53,803 women from the New Hampshire mammography network," Radiology,  217: p. 832-840 (2000). [PubMed]
  17. B. W. Pogue and K.D. Paulsen, "High resolution near infrared tomographic imaging simulations of rat cranium using apriori MRI structural information," Opt. Lett. 23, 1716-8 (1998). [CrossRef]
  18. B. Brooksby, H. Dehghani, B. W. Pogue, K. D. Paulsen, "Near infrared (NIR) tomography breast image reconstruction with apriori structural information from MRI: algorithm development for reconstructing heterogeneities" IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003). [CrossRef]
  19. M. Schweiger, S. R. Arridge, "Optical tomographic reconstruction in a complex head model using apriori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999). [CrossRef] [PubMed]
  20. H. Dehghani, B.W. Pogue, J. Shudong, B. Brooksby, and K.D. Paulsen, "Three-dimensional optical-tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  21. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E.M. Hillman, S.R. Arridge, and A.G. Yodh, "Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography," Opt. Lett. 28, 2339-41 (2003). [CrossRef] [PubMed]
  22. A. Li, Q. Zhang, J.P. Culver, E.L. Miller, and D.A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256-8 (2004). [CrossRef] [PubMed]
  23. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, "Spectrally constrained chromophore and scattering NIR tomography provides quantitative and robust reconstruction," Appl. Opt. 44, 1858-69 (2005). [CrossRef] [PubMed]
  24. J. -L. Boulnois, "Photophysical processes in recent medical laser developments: a review," Lasers in Medical Science 1, 47-66 (1986). [CrossRef]
  25. G. M. Hale, and M.R. Querry, "Optical constants of water in the 200-nm to 200-um wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  26. J. R. Mourant, T. Fuselier, J. Boyer, T.M. Johnson, and I.J. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  27. H. J. van Staveren, C.J.M. Moes, J. van Marle, S.A. Prahl, and J.C. van Gemert, "Light scattering in Intralipid - 10% in the wavelength range of 400-1100nm," Appl. Opt. 30, 4507-4514 (1991). [CrossRef] [PubMed]
  28. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S.R. Arridge, E.M. Hillman, and A.G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  29. M. Schweiger, and S.R. Arridge, "Comparison of two- and three-dimensional reconstruction methods in optical tomography," Appl. Opt. 37, 7419-7428 (1998). [CrossRef]
  30. J. C. Hebden, H. Veenstra, H. Dehghani, E.M. Hillman, M. Schweiger, S.R. Arridge, and D.T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001). [CrossRef]
  31. J. P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, "Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging," Med. Phys. 30, 235-247 (2003). [CrossRef] [PubMed]
  32. K. D. Paulsen, P.M. Meaney, M.J. Moskowitz, and J.M. Sullivan, "A dual mesh scheme for finite element based reconstruction algorithms," IEEE Trans Med, Imaging 14, 504-514 (1995). [CrossRef]
  33. Intes, X. , S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, "Time-Domain Optical Mammography SoftScan: Initial Results, " Acad. Radiology 12, 934-947 (2005). [CrossRef]
  34. A. Ishimaru, Wave propagation and scattering in random media. Vol. 1. 1978: Academic Press, Inc., New York.
  35. M. S. Patterson, B.C. Wilson, and D.R. Wyman, "The propagation of optical radiation in tissue II. Optical properties of tissues and resulting fluence distributions," Lasers Med. Sci. 6, 379-390 (1990). [CrossRef]
  36. T. J. Farrell, M. S. Patterson, B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  37. K. D. Paulsen, and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  38. S. R. Arridge, and M. Schweiger, "Image reconstruction in optical tomography," Phil. Trans. R. Soc. Lond. B 352, 717-726 (1997). [CrossRef]
  39. M. Schweiger, S.R. Arridge, M. Hiraoka, and D.T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  40. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, "Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results," Appl. Opt. 42, 135-145 (2003). [CrossRef] [PubMed]
  41. X. Wang, B.W. Pogue, S. Jiang, X. Song, K.D. Paulsen, C. Kogel, S.P. Poplack, and W.A. Wells, "Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo," J. Biomed. Opt. 10, 051704-1:051704-8 (2005).
  42. J. R. Mourant, A.H. Hielscher, A.A. Eick, T.M. Johnson, and J.P. Freyer, "Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells," Cancer Cytopathology 84, 366-74 (1998).
  43. Srinivasan, S. , B.W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W.A. Wells, S.P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513-526 (2005). [PubMed]
  44. S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995). [CrossRef] [PubMed]
  45. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems,  15, R41-R93 (1999). [CrossRef]
  46. O'Leary, M.A. , Boas, D. A. , Chance, B. , Yodh, A. G. , "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20,426-428 (1995). [CrossRef] [PubMed]
  47. G. Boverman, E.L. Miller, A. Li, Q. Zhang, T. Chaves, D.H. Brooks, and D. Boas, "Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005). [CrossRef] [PubMed]
  48. B. Brandstatter, K. Hollaus, H. Hutten, M. Mayer, R. Merwa, and H. Scharfetter, "Direct estimation of Cole parameters in multifrequency EIT using a regularized Gauss-Newton method," Physiol, Meas,  24, 437-48 (2003). [CrossRef]
  49. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B.W. Pogue, and K.D. Paulsen, "Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior," Opt. Lett. 30, 1968-70 (2005). [CrossRef] [PubMed]
  50. S. R. Arridge, and M. Schwieger, "Gradient-based optimisation scheme for optical tomography," Opt. Express 2, 212-226 (1998). [CrossRef]
  51. M. Schweiger, S.R. Arridge, and I. Nissila, "Gauss-Newton method for image reconstruction in diffuse optical tomography," Phys. Med. Biol. 50, 2365-2386 (2005). [CrossRef] [PubMed]
  52. T. Dierkes, D. Grosenick, K.T. Moesta, M. Moller, P.M. Schlag, H. Rinneberg, and S.R. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005). [CrossRef] [PubMed]
  53. M. J. Eppstein, D.E. Dougherty, D.J. Hawrysz, and E.M. Sevick, "Three-dimensional bayesian optical image reconstruction with domain decomposition," IEEE Trans Med Imaging 20, 147-162 (2001). [CrossRef] [PubMed]
  54. E. E. W. Van Houten, K.D. Paulsen, M.I. Miga, F.E. Kennedy, and J.B. Weaver, "An overlapping subzone technique for MR-based elastic property reconstruction," Mag. Res. Med. 42, 779-786 (1999). [CrossRef]
  55. E. E. Van Houten, J.B. Weaver, M.I. Miga, F.E. Kennedy, and K.D. Paulsen, "Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process," Med. Phys. 27, 101-107 (2000). [CrossRef] [PubMed]
  56. M. Doyley, E.E. Van Houten, J.B. Weaver, S.P. Poplack, L. Duncan, F.E. Kennedy, and K.D. Paulsen, "Sheer modulus estimation using parallelized partial volumetric reconstruction," IEEE Trans Med Imaging 23, 1404-1416 (2004). [CrossRef] [PubMed]
  57. B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited