OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices

A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5456-5467 (2006)
http://dx.doi.org/10.1364/OE.14.005456


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the application of wide-field frequency domain Fluorescence Lifetime Imaging Microscopy (FLIM) to imaging in microfluidic devices. FLIM is performed using low cost, intensity modulated Light Emitting Diodes (LEDs) for illumination. The use of lifetime imaging for quantitative analysis within such devices is demonstrated by mapping the molecular diffusion of iodide ions across a microchannel.

© 2006 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.2520) Microscopy : Fluorescence microscopy
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Microscopy

History
Original Manuscript: April 7, 2006
Revised Manuscript: May 26, 2006
Manuscript Accepted: May 26, 2006
Published: June 12, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, "Application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices," Opt. Express 14, 5456-5467 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-12-5456


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D.J. Beebe, G.A. Mensing and G.M. Walker, "Physics and Applications of Microfluidics in Biology," Annu. Rev. Biomed. Eng. 4,261-286 (2002). [CrossRef] [PubMed]
  2. S.C. Jakeway, A.J. de Mello and E.L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius J. Anal. Chem. 366,525-539 (2000). [CrossRef]
  3. T. Chovan and A. Guttman, "Microfabricated devices in biotechnology and biochemical processing," Trends Biotechnol. 20,116-122 (2002). [CrossRef] [PubMed]
  4. A.J. Tüd˝os, G.A.J. Besselink and R.B.M. Schasfoort, "Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry," Lab. Chip 1,83-96 (2001). [CrossRef]
  5. E. Verpoorte, "Microfluidic chips for clinical and forensic analysis," Electrophoresis 23, 677-712 (2002). [CrossRef] [PubMed]
  6. Y. Huang, E.L. Mather, J.L. Bell and M. Madou, "MEMS-based sample preparation for molecular diagnostics," Anal. Bioanal. Chem. 372,49-65 (2002). [CrossRef] [PubMed]
  7. T. Vo-Dinh and B. Cullum, "Biosensors and biochips: advances in biological and medical diagnostics," Fresenius J. Anal. Chem. 366,540-551 (2000). [CrossRef]
  8. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida and M. Maeda, "Visualization of convective mixing in microchannel by fluorescence imaging," Meas. Sci. Technol. 14,114-122 (2003). [CrossRef]
  9. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago, R.J. Adrian, H. Aref and D.J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel," J. Microelectromech. Syst. 9,190-197 (2000). [CrossRef]
  10. R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides and H.A. Stone, "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels," Appl. Phys. Lett. 76,2376-2378 (2000). [CrossRef]
  11. C. Xi, D.L. Marks, D.S. Parikh, L. Raskin and S.A Boppart, "Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography," P. Natl. Acad. Sci. USA 101,7516-7521 (2004). [CrossRef]
  12. R.K.P. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M.A.A. Neil, A.J. deMello and P.M.W. French, "Time-resolved fluorescence imaging of solvent interactions in microfluidic devices," Opt. Express 13,6275-6285 (2005). [CrossRef] [PubMed]
  13. S.W. Magennis, E.M. Graham and A.C. Jones, "Quantitative Spatial Mapping of Mixing in Microfluidic Systems," Angewandte Chemie International Edition 44,6512-6516 (2005). [CrossRef]
  14. J. R. Lakowicz and K. W. Berndt, "Lifetime-Selective Fluorescence Imaging Using An Rf Phase- Sensitive Camera," Rev. Sci. Instrum. 62,1727-1734 (1991). [CrossRef]
  15. G. Marriott, R.M. Clegg, D.J. Arndt-Jovin and T.M. Jovin, "Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging," Biophys. J. 60,1374-1387 (1991). [CrossRef] [PubMed]
  16. Q. S. Hanley and A. H. A. Clayton, "AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers," J. Microscopy 218,62-67 (2005). [CrossRef]
  17. D. A. Jeong, G. Markle, F. Owen, A. Pease and R. Von Bünau Grenville, "The future of optical lithography," Solid State Technol. 37,39-47 (1994).
  18. M. D. Levenson, "Extending optical lithography to the gigabit era," Solid State Technol. 38, 57-66 (1995).
  19. L. Geppert, "Semiconductor lithography for the next millennium," IEEE Spectrum 33, 33-38 (1996). [CrossRef]
  20. S. Okazaki, "Resolution limits of optical lithography," J. Vac. Sci. Technol. B 9,2829-2833 (1991). [CrossRef]
  21. LK van Geest and KWJ Stoop, "FLIM on a wide field fluorescence microscope," Lett. Peptide Sci. 10,501-510 (2003). [CrossRef]
  22. RobertM. Clegg, Thomas M. Jovin Theodorus and W J Gadella Jr, "Fluorescence lifetime imaging microscopy: Pixel-by-pixel analysis of phase-modulation data," Bioimaging 2,139-159 (1994). [CrossRef]
  23. J.M. Harris and F.E. Lytle, "Measurement of subnanosecond fluorescence decays by sampled single-photon detection," Rev. Sci. Instrum. 48,1470-1476 (1977). [CrossRef]
  24. Q. S. Hanley, V. Subramaniam and D. J. Arndt-Jovin, "Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression," Cytometry 43,248-260 (2001). [CrossRef] [PubMed]
  25. A. Squire and P.I.H. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Mircoscopy 193,36-49 (1999). [CrossRef]
  26. M.J. Cole, J. Siegel, S.E.D. Webb, R. Jones, K. Dowling, P.M.W. French, M.J. Lever, L.O.D. Sucharov, M.A.A. Neil, R. Juskaitis and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25,1361-1363 (2000). [CrossRef]
  27. A. Elder, J. Frank, J. Swartling, X. Dai and C.F. Kaminski, "Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources," J. Microscopy2006 (accepted for publication). [CrossRef]
  28. A. C. Mitchell, J. E. Wall and J. G. Murray, "Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging," J. Microsc. Oxf. 206,225-232 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4783 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited