OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Structuring by multi-beam interference using symmetric pyramids

Ming Lei, Baoli Yao, and Romano A. Rupp  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5803-5811 (2006)
http://dx.doi.org/10.1364/OE.14.005803


View Full Text Article

Enhanced HTML    Acrobat PDF (5346 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for producing optical structures using rotationally symmetric pyramids is proposed. Two-dimensional structures can be achieved using acute prisms. They form by multi-beam interference of plane waves that impinge from directions distributed symmetrically around the axis of rotational symmetry. Flat-topped pyramids provide an additional beam along the axis thus generating three-dimensional structures. Experimental results are consistent with the results of numerical simulations. The advantages of the method are simplicity of operation, low cost, ease of integration, good stability, and high transmittance. Possible applications are the fabrication of photonic micro-structures such as photonic crystals or array waveguides as well as multi-beam optical tweezers.

© 2006 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Trapping

History
Original Manuscript: March 9, 2006
Revised Manuscript: May 13, 2006
Manuscript Accepted: May 13, 2006
Published: June 12, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Ming Lei, Baoli Yao, and Romano A. Rupp, "Structuring by multi-beam interference using symmetric pyramids," Opt. Express 14, 5803-5811 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-12-5803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 10,283-295 (1993). [CrossRef]
  2. U. Gruning, V. Lehmann, S. Ottow, and K. Busch, "Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm," Appl. Phys. Lett. 68, 747-749 (1996). [CrossRef]
  3. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoðlu, "Tuning photonic crystal nanocavity modes by wet chemical digital etching," Appl. Phys. Lett. 87, 021108 (2005). [CrossRef]
  4. K. Wang, A. Chelnokov, S. Rowson, P. Garoche, and J-M Lourtioz, "Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals," J. Phys. D: Appl. Phys. 33, L119-L123 (2000). [CrossRef]
  5. H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001). [CrossRef]
  6. M. J. Escuti, and G. P. Crawford, "Holographic photonic crystals," Opt. Eng. 43, 1973-1987 (2004). [CrossRef]
  7. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001). [CrossRef]
  9. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003). [CrossRef]
  10. W. Hu, H. Li, B. Cheng, J. Yang, Z. Li, J. Xu, and D. Zhang, "Planar optical lattice of TiO2 particles," Opt. Lett. 20, 964-966 (1995). [CrossRef] [PubMed]
  11. L. Cai, X. Yang, and Y. Wang, "All fourteen Bravais lattices can be formed by interference of four noncoplanar beams," Opt. Lett. 27, 900-902 (2002). [CrossRef]
  12. R. M. Herman, and T. A. Wiggins, "Production and uses of diffractionless beams," J. Opt. Soc. Am. A 8, 932-942 (1991). [CrossRef]
  13. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun. 197, 239-245 (2001). [CrossRef]
  14. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002). [CrossRef] [PubMed]
  15. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2265 KB)     
» Media 2: AVI (2317 KB)     
» Media 3: AVI (2402 KB)     
» Media 4: AVI (501 KB)     
» Media 5: AVI (984 KB)     
» Media 6: AVI (925 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited