OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape

Carlos Dorronsoro, Daniel Cano, Jesús Merayo-Lloves, and Susana Marcos  »View Author Affiliations

Optics Express, Vol. 14, Issue 13, pp. 6142-6156 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Flat and spherical PMMA surfaces were ablated with a standard refractive surgery laser system. The ratio of profiles on flat to spherical PMMA surfaces was used to estimate experimentally the radial change in ablation efficiency for PMMA and cornea. Changes in ablation efficiency accounted for most of the asphericity increase found clinically, using the same laser system. This protocol is useful to obtain a correction factor for any ablation algorithm and laser system, and to estimate the contribution of biomechanics to the increase of corneal asphericity in myopic refractive surgery.

© 2006 Optical Society of America

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(140.3390) Lasers and laser optics : Laser materials processing
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 17, 2006
Revised Manuscript: June 12, 2006
Manuscript Accepted: June 14, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Carlos Dorronsoro, Daniel Cano, Jesús Merayo-Lloves, and Susana Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990). [CrossRef] [PubMed]
  2. M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000). [PubMed]
  3. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001). [PubMed]
  4. S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001). [PubMed]
  5. J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999). [CrossRef]
  6. L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004). [PubMed]
  7. C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988). [PubMed]
  8. D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001). [PubMed]
  9. J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).
  10. S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).
  11. M. Mrochen, T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, 584-587 (2001).
  12. J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002). [CrossRef]
  13. R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003). [CrossRef] [PubMed]
  14. D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004). [CrossRef]
  15. C. Roberts, and W. Dupps, "Corneal biomechanics and their role in corneal ablative procedures," in Customized corneal ablation: The quest for super vision, S. McRae, R. Krueger, and R. Applegate, eds. (Stack Publishing, 2001).
  16. J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996). [PubMed]
  17. C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).
  18. A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004). [CrossRef] [PubMed]
  19. S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surg. 17,596-601 (2001).
  20. G. Pettit and M. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996). [CrossRef] [PubMed]
  21. M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999). [PubMed]
  22. R. Srinivasan, "Ablation of polymers and biological tissue by ultraviolet lasers," Science,  234, 559-565 (1986). [CrossRef] [PubMed]
  23. G. Pettit, "Practical issues of wavefront-guided refractive surgery," FIO/LS Conference Program 118, (2005).
  24. J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004). [CrossRef]
  25. B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004). [CrossRef] [PubMed]
  26. F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).
  27. S. Marcos, D. Cano, and C. Dorronsoro, "A method of preventing the induction of aberrations in laser refractive surgery systems," Patent WO 2005/122873 A1. (2005), http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2005122873.
  28. D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003). [CrossRef] [PubMed]
  29. A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).
  30. C. Roberts "The cornea is not a piece of plastic," J. Refract. Surg. 16, 407-413 (2000). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited