OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Holographic optical tweezers for object manipulations at an air-liquid surface

Alexander Jesacher, Severin Fürhapter, Christian Maurer, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations

Optics Express, Vol. 14, Issue 13, pp. 6342-6352 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (549 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a “clocked” traffic of micro beads, and size-selective guiding of beads along optical “conveyor belts”.

© 2006 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:

Original Manuscript: May 11, 2006
Manuscript Accepted: June 1, 2006
Published: June 26, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Alexander Jesacher, Severin Fürhapter, Christian Maurer, Stefan Bernet, and Monika Ritsch-Marte, "Holographic optical tweezers for object manipulations at an air-liquid surface," Opt. Express 14, 6342-6352 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optical elements," Rev. Sci. Instr. 69,1974-1977 (1998). [CrossRef]
  2. M. J. Lang and S.M. Block, "Resource Letter: LBOT-1: Laser based optical tweezers," Am. J. Phys. 71,201-21 (2003). [PubMed]
  3. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185,77-82 (2000). [CrossRef]
  4. R. L. Eriksen, V. R. Daria, and J. Glückstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10,597-602 (2002). [PubMed]
  5. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11,2053-2059 (2003). [CrossRef] [PubMed]
  6. P. T. Korda, M. B. Taylor, and D. G. Grier, "Kinetically locked-in colloidal transport in an array of optical tweezers," Phys. Rev. Lett. 89,128301 (2002). [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426,421-424 (2003). [CrossRef] [PubMed]
  8. A. Jesacher, S. Fürhapter, S. Bernet, andM. Ritsch-Marte, "Size-selective trapping with optical cogwheel tweezers," Opt. Express 12,4129-4135 (2004). [CrossRef] [PubMed]
  9. D. G. Grier, "A revolution in optical manipulation," Nature 424,810-816 (2003). [CrossRef] [PubMed]
  10. K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12,1144-1149 (2004). [CrossRef] [PubMed]
  11. J. E. Curtis and D. G. Grier, "Structure of optical vortices," Phys. Rev. Lett. 90,133901 (2003). [CrossRef] [PubMed]
  12. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86,031106 (2005). [CrossRef]
  13. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, "Optical trapping of threedimensional structures using dynamic holograms," Opt. Express 11,3562-3567 (2003). [CrossRef] [PubMed]
  14. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12,220-226 (2004). [CrossRef] [PubMed]
  15. C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, "Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology," Biophys J. 200589,1353-1361 (2005). [CrossRef]
  16. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, "Diffractive optical tweezers in the Fresnel regime," Opt. Express 12,2243-2250 (2004). [CrossRef] [PubMed]
  17. M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, "Optimized holographic optical traps," Opt. Express 13,5831-5845 (2005). [CrossRef] [PubMed]
  18. E. R. Dufresne,G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001). [CrossRef]
  19. K. Ladavac and D. G. Grier, "Colloidal hydrodynamic coupling in concentric optical vortices," Europhys. Lett. 70,548-552 (2005). [CrossRef]
  20. K. Ladavac and D. G. Grier, "Statistically Locked-in Transport Through Periodic Potential Landscapes," Phys. Rev. Lett. 92,130602(2004). [CrossRef]
  21. M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233 (1989). [CrossRef] [PubMed]
  22. [CrossRef]
  23. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, "Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20, 1568 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2401 KB)     
» Media 2: AVI (1480 KB)     
» Media 3: AVI (1236 KB)     
» Media 4: AVI (2511 KB)     
» Media 5: AVI (1280 KB)     
» Media 6: AVI (1911 KB)     
» Media 7: AVI (2097 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited