OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Adaptive optics with a magnetic deformable mirror: applications in the human eye

Enrique J. Fernández, Laurent Vabre, Boris Hermann, Angelika Unterhuber, Boris Považay, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 8900-8917 (2006)
http://dx.doi.org/10.1364/OE.14.008900


View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.

© 2006 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(220.1000) Optical design and fabrication : Aberration compensation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Adaptive Optics

History
Original Manuscript: July 19, 2006
Revised Manuscript: September 11, 2006
Manuscript Accepted: September 19, 2006
Published: October 2, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Enrique J. Fernandez, Laurent Vabre, Boris Hermann, Angelika Unterhuber, Boris Povazay, and Wolfgang Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-20-8900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Hubbin and L. Noethe, "What is adaptive optics?," Science 262, 1345-1484 (1993).
  2. H. Hofer, P. Artal, B. Singer, L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  3. E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  4. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001). [CrossRef] [PubMed]
  5. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express 14, 4552-4569 (2006). [CrossRef] [PubMed]
  6. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989). [CrossRef] [PubMed]
  7. A. Roorda, F. Romero-Borja, W. J. DonnellyIII, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  8. Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscopy," Opt. Lett. 31, 1268-1270 (2006). [CrossRef] [PubMed]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive optics ultrahigh resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  10. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics spectral optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  11. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005). [CrossRef] [PubMed]
  12. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vis. Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  13. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  14. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surgery 18, 634-638 (2002).
  15. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. of Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
  16. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005). [CrossRef]
  17. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthal. Vis. Sci. 45, 4601-4610 (2004). [CrossRef] [PubMed]
  18. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006). [CrossRef]
  19. K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, "Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control," J. Opt. Soc. Am. A 23, 1082-1088 (2006). [CrossRef]
  20. B. J. Wilson, K. E. Decker, and A. Roorda, "Monochromatic aberrations provide an odd-error cue to focus direction" J. Opt. Soc. Am A 19, 833-839 (2002). [CrossRef]
  21. G. Rousset, "Wavefront sensing", NATO ASI Series Vol. C423, 115-137, Adaptive Optics for Astronomy, D. Alloin J.-M. Mariotti, Eds., (Kluwer Academic Publishers, 1994).
  22. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949- 1955 (1994). [CrossRef]
  23. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17,1388-1398 (2000). [CrossRef]
  24. F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998). [CrossRef]
  25. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004). [CrossRef] [PubMed]
  26. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A. 14, 2884-2892 (1997). [CrossRef]
  27. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005). [CrossRef] [PubMed]
  28. G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995). [CrossRef]
  29. L. Zhu, P-C. Sun, and Y. Fainman, "Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror," Appl. Opt. 38, 5350-5354 (1999). [CrossRef]
  30. D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000). [CrossRef]
  31. C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000). [CrossRef] [PubMed]
  32. E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003). [CrossRef] [PubMed]
  33. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye, " Opt. Lett. 27, 1537-1539 (2002). [CrossRef]
  34. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003). [CrossRef] [PubMed]
  35. American National Standard Institute, American National Standard for Safe Use of Lasers, ANSI Z 136-1 (2000).
  36. C. Boyer, V. Michau, and G. Rousset, "Adaptive optics: interaction matrix measurements and real time control algorithms for the COME ON project," in Amplitude and Intensity Spatial Interferometry, Proc. SPIE 1237, 406-424 (1990).
  37. W. H. Press, S. A. Tekolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, 1992).
  38. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006). [CrossRef] [PubMed]
  39. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]
  40. L. N. Thibos, R. A. Applegate, J. Schwiegerling, R. H. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," J. Refract. Surgery 18, 652-660 (2002).
  41. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, "Statistical description of wave-front aberration in the human eye," Opt. Lett. 27, 37-39 (2002). [CrossRef]
  42. J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  43. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vis. Res. 42, 1611-1617 (2002). [CrossRef] [PubMed]
  44. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  45. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, "Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes," J. Opt. Soc. Am. A 19, 1-9 (2002). [CrossRef]
  46. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  47. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  48. W. Drexler, "Ultrahigh resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  49. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  50. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Medicine 7, 502-507 (2001). [CrossRef] [PubMed]
  51. E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005). [CrossRef] [PubMed]
  52. E. S. Claflin and N. Bareket, "Configuring an electrostatic membrane mirror by least square fitting with analytically derived influence functions," J. Opt. Soc. Am. A 3, 1833-1839 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited