OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy

Ruei-Yu He, Guan-Liang Chang, Hua-Lin Wu, Chi-Hung Lin, Kuo-Chih Chiu, Yuan-Deng Su, and Shean-Jen Chen  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 9307-9316 (2006)
http://dx.doi.org/10.1364/OE.14.009307


View Full Text Article

Enhanced HTML    Acrobat PDF (6529 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a total internal reflection fluorescence microscopy (TIRFM) technique to image live cells on a biosurface not only provides an enhanced understanding of cellular functions, but also improves the signal-to-noise ratio of the images. However, the intensity of the fluorescence signal must be increased if a more dynamic biomolecular imaging capability is required. Accordingly, this study presents a surface plasmon-enhanced TIRFM technique in which the fluorescence signals are enhanced via surface plasmons offered by a silver nanolayer. The developed microscopy technique is successfully applied to the real-time observation of the thrombomodulin proteins of live cell membranes. The experimental results and the simulation results demonstrate that the live cell membrane images obtained in the proposed surface plasmon-enhanced TIRFM technique are brighter by approximately one order of magnitude than those provided by conventional TIRFM.

© 2006 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 26, 2006
Revised Manuscript: September 7, 2006
Manuscript Accepted: September 13, 2006
Published: October 2, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Ruei-Yu He, Guan-Liang Chang, Hua-Lin Wu, Chi-Hung Lin, Kuo-Chih Chiu, Yuan-Deng Su, and Shean-Jen Chen, "Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy," Opt. Express 14, 9307-9316 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-20-9307


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pawley ed., Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006). [CrossRef]
  2. D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001). [CrossRef] [PubMed]
  3. J. A. Steyer and W. Almers, "A real-time view of within life within 100 nm of the plasma membrane," Nat. Rev. Mol. Cell Biol. 2, 268-276 (2001). [CrossRef] [PubMed]
  4. H. Schneckenburger, "Total internal reflection fluorescence microscopy: technical innovations and novel applications," Curr. Opin. Biotechnol. 16, 13-18 (2005). [CrossRef] [PubMed]
  5. D. Toomre and D. J. Manstein, "Lighting up the cell surface with evanescent wave microscopy," Trends Cell Biol. 11, 298-303 (2001). [CrossRef] [PubMed]
  6. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, "Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances," J. Cell Sci. 103, 491-499 (1992). [PubMed]
  7. S. E. Sund and D. Axelrod, "Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching," Biophys. J. 79, 1655-1669 (2000). [CrossRef] [PubMed]
  8. W. J. Betz, F. Mao, and C. B. Smith, "Imaging exocytosis and endocytosis," Curr. Opin. Neurobiol. 6, 365-371 (1996). [CrossRef] [PubMed]
  9. R. Sailer, W. S. Strauss, H. Emmert, K. Stock, R. Steiner, and H. Schneckenburger, "Plasma membrane associated location of sulfonated meso-tetraphenylporphyrins of different hydrophilicity probed by total internal reflection fluorescence spectroscopy," Photochem. Photobiol. 71, 460-465 (2000). [CrossRef] [PubMed]
  10. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005). [CrossRef] [PubMed]
  11. K. Tawa and W. Knoll, "Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy," Nucleic Acids Res. 32, 2372-2377 (2004). [CrossRef] [PubMed]
  12. F. Yu, B. Persson, S. Lofas, and W. Knoll, "Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level," Anal. Chem. 76, 6765-6770 (2004). [CrossRef] [PubMed]
  13. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004). [CrossRef] [PubMed]
  14. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, "Plasmonic enhancement of fluorescence for sensor applications," Sens. Actuators B 107, 148-153 (2005). [CrossRef]
  15. G. Raschke, S. Kowarik, T. Franzl, C. So1nnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Ku1rzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003). [CrossRef]
  16. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer," Nano Lett. 5, 829-835 (2005). [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  18. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004). [CrossRef] [PubMed]
  19. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  20. M. Ohtsu ed., Progress in Nano-Electro-Optics I: Basics and Theory of Near-field Optics (Springer, 2003).
  21. H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, "Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies," J. Chem. Phys. 98, 10093-10095 (1993). [CrossRef]
  22. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  23. W. H. Weber and C. F. Eagen, "Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236-238 (1979). [CrossRef] [PubMed]
  24. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005). [CrossRef] [PubMed]
  25. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  26. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloids Surf. A 171, 115-130 (2000). [CrossRef]
  27. C. D. Geddes and J. R. Lakowicz, "Metal-enhanced fluorescence," J. Fluor. 12, 121-129 (2002). [CrossRef]
  28. J. R. Lakowicz, "Radiative decay engineering: biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001). [CrossRef] [PubMed]
  29. Y. Tezuka, S. Yonezawa, I. Maruyama, Y. Matsushita, T. Shimizu, H. Obama, M. Sagara, K. Shirao, C. Kusano, and S. Natsugoe, "Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis," Cancer Res. 55, 196-200 (1995).
  30. M. C. Boffa, B. Burke, and C. C. Haudenschild, "Preservation of thrombomodulin antigen on vascular and extravascular surfaces," J. Histochem. Cytochem. 35, 1267-1276 (1987). [CrossRef] [PubMed]
  31. H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, "Thrombomodulin-mediated cell adhesion," J. Biol. Chem. 278, 46750-46759 (2003). [CrossRef] [PubMed]
  32. Y. Zhang, H. W. Guettler, J. Chen, O. Wilhelm, Y. Deng, F. Qiu, K. Nakagawa, M. Klevesath, S. Wilhelm, H. Böhrer, M. Nakagawa, H. Graeff, E. Martin, D. M. Stern, R. D. Rosenberg, R. Ziegler, and P. P. Nawroth, "Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity," J. Clin. Invest. 101, 1301-1309 (1998). [CrossRef] [PubMed]
  33. K. Suzuki, H. Kusumoto, Y. Deyashiki, J. Nishioka, I. Maruyamal, M. Zushi, S. Kawahara, G. Honda, S. Yamamoto, and S. Horiguchi, "Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation," EMBO J. 6, 1891 -1897 (1987). [PubMed]
  34. R. M. Fulbright and D. Axelrod, "Dynamics of nonspecific adsorption of insulin to erythrocyte membranes," J. Fluor. 3, 1-16 (1993). [CrossRef]
  35. S. Ekgasit, F. Yu, and W. Knoll, "Displacement of molecules near a metal surface as seen by an SPR-SPFS biosensor," Langmuir 21, 4077-4082 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited