OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography

Sean J. Kirkpatrick, Ruikang K. Wang, Donald D. Duncan, Molly Kulesz-Martin, and Ken Lee  »View Author Affiliations


Optics Express, Vol. 14, Issue 21, pp. 9770-9779 (2006)
http://dx.doi.org/10.1364/OE.14.009770


View Full Text Article

Enhanced HTML    Acrobat PDF (705 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical elastography is an imaging modality that relies on variations in the local mechanical properties of biological tissues as the contrast mechanism for image formation. Skin lesions, such as melanomas and other invasive conditions, are known to alter the arrangement of collagen fibers in the skin and thus should lead to alterations in local skin mechanical properties. We report on an acousto-optical elastography (AOE) imaging modality for quantifying the mechanical behavior of skin lesions. The method relies upon stimulating the tissue with a low frequency acoustic force and imaging the resulting strains in the tissue by means of quantifying the magnitude of the dynamic shift in a back-reflected laser speckle pattern from the skin. The magnitude of the shift reflects the local stiffness of the tissue. We demonstrate AOE on a tissue-mimicking phantom, an in vivo mouse melanoma lesion and two types of in vivo human melanocytic nevi. The skin lesions we examined were found to have distinct mechanical properties that appear to correlate with the varying degrees of dermal involvement of the lesions.

© 2006 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 25, 2006
Revised Manuscript: September 26, 2006
Manuscript Accepted: September 26, 2006
Published: October 16, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Sean J. Kirkpatrick, Ruikang K. Wang, Donald D. Duncan, Molly Kulesz-Martin, and Ken Lee, "Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography," Opt. Express 14, 9770-9779 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-14-21-9770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yadzi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging 13, 111-134 (1991). [CrossRef] [PubMed]
  2. S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir, "Analysis of an adaptive strain estimation technique in elastography," Ultrason. Imaging 24,109-118 (2002). [PubMed]
  3. I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging 15, 73-88 (1993). [CrossRef] [PubMed]
  4. B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. Pennanen, "Elastography of breast lesions: Initial clinical results," Radiology 202,79-86 (1997). [PubMed]
  5. T. A. Krouskop, T. M. Wheeler, F Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate issues under compression," Ultrason Imaging 20, 260-274 (1998).
  6. D. B. Plewes, J. Bishop, A. Samani, and J. Sciarretta, "Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography," Phys. Med. Biol. 45,1591-1610 (2000). [CrossRef] [PubMed]
  7. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, D. Holz, "High-resolution tensor MR elastography for breast tumor detection," Phys. Med. Biol. 45,1649-1664 (2000). [CrossRef] [PubMed]
  8. K. M. Hiltasky, M. Fruger, C. Starke, L. Heuser, H. Ermet, and A. Jensen, "Freehand ultrasound elastography of breast lesions: clinical results," Ultrasound Med. Biol. 27, 1461-1469 (2001). [CrossRef]
  9. J. Lorenzen,  et al., "MR elastography of the breast: preliminary clinical results," Rofo. Fortsch.r Geb. Rontgenstr. Neuen Bildgeb. Verfahr,  174, 830-834 (2002). [CrossRef]
  10. E. A. el-Gabry, E. J. Halpern, S. E. Strup, and L. G. Gomella, "Imaging prostate cancer: Current and future applications," Oncology 15, 325-336 (2001). [PubMed]
  11. D. L. Cochlin, R. H. Ganatra, and D. F. Griffiths, "Elastography in the detection of prostatic cancer," Clin. Radiol. 57,1014-1020 (2002).
  12. C. L. de Korte, and A. F. van der Steen, "Intravascular ultrasound elastography: An overview", Ultrasonics 40, 859-865 (2002). [CrossRef] [PubMed]
  13. M. A. Dresner,  et al., "Magnetic resonance elastography of skeletal muscle," J. Magn. Reson. Imaging 13, 269-276 (2001). [CrossRef] [PubMed]
  14. B. Rukavina, and N. Mohar, "An approach of ultrasound diagnostic techniques of the skin and subcutaneous tissue," Dermatologica 158, 81-92 (1979). [CrossRef] [PubMed]
  15. W. Strasser, H. Wokalek, W. Vanscheidt, and E. Schopf, "B-scan ultrasound in dermatology," Hautartz 38, 660-663 (1987).
  16. R. O. Potts, D. A. Chrisman, E. M. Buras, "The dynamic mechanical properties of human skin in vivo," J. Biomech. 16, 365-372 (1983). [CrossRef] [PubMed]
  17. V. V. Kazkov, and B. N. Klochkov, "Low frequency mechanical properties of the soft tissue of the human arm," Biophysics 34,742-747 (1989).
  18. S. J. Kirkpatrick, D. D. Duncan, and L. Fang, "Low frequency surface wave propagation and the viscoelastic behavior of porcine skin," J. Biomed. Opt. 9,1311-1319 (2004). [CrossRef] [PubMed]
  19. D. D. Duncan, and S. J. Kirkpatrick, "Processing algorithms for tracking speckle shifts in optical elastography of biological tissues," J. Biomed. Opt. 6, 418-426 (2001). [CrossRef] [PubMed]
  20. D. D. Duncan and S. J. Kirkpatrick, "Performance analysis of a maximum-likelihood speckle motion estimator," Opt. Express 10, 927-941 (2002). [PubMed]
  21. C. U. Devi, R. M. Vasu, and A. K. Sood, "Design, fabrication, and characterization of a tissue-equivalent phantom for optical elastography," J. Biomed. Opt,  10, 044020 (2005). [CrossRef]
  22. F. P. Noonan, J. A. Recio, H. Takayama, P. Duray, M. R. Anver, W. L. Rush, E. C. De Fabo, and G. Merlino, "Neonatal sunburn and melanoma in mice," Nature 413, 271-272 (2001). [CrossRef] [PubMed]
  23. R. K. Wang, and Z. Ma, "A practical approach to eliminate autocorrelation artifacts for volume-rate spectral domain optical coherence tomography," Phys. Med. Biol. 51, 3231-3239 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (2738 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited