OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 11 — Nov. 13, 2006

Low-index discontinuity terahertz waveguides

Michael Nagel, Astrid Marchewka, and Heinrich Kurz  »View Author Affiliations

Optics Express, Vol. 14, Issue 21, pp. 9944-9954 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (869 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(260.3090) Physical optics : Infrared, far

ToC Category:
Optical Devices

Original Manuscript: July 21, 2006
Revised Manuscript: September 29, 2006
Manuscript Accepted: September 29, 2006
Published: October 16, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Michael Nagel, Astrid Marchewka, and Heinrich Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14, 9944-9954 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Wang and M Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  2. M. Wächter, M. Nagel, and H. Kurz, "Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires," Opt. Express 13, 10815-10822 (2005). [CrossRef] [PubMed]
  3. T. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 1619041 (2005). [CrossRef]
  4. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  5. L. -J. Chen, H. -W. Chen, T. -F. Kao, J. -Y. Lu, and C. -K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006). [CrossRef] [PubMed]
  6. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers," Appl. Phys. Lett. 76, 1987-1989 (2000). [CrossRef]
  7. R. Mendis and D. Grischkowsky, "Plastic ribbon THz waveguides," J. Appl. Phys. 88, 4449-4451 (2000). [CrossRef]
  8. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  9. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon Photonic Crystal Fiber as Terahertz Waveguide," Jpn. J. Appl. Phys. 43, 317-319 (2004). [CrossRef]
  10. R. F. Cregan,  et al. "Single-mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  11. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  12. L. Tong,  et al. "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  13. E. A. J. Marcatili, and R. A. Schmetzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43,1783 (1964).
  14. J. A. Harrington and C. C. Gregory, "Hollow sapphire fibers for the delivery of CO2 laser energy," Opt. Lett. 10, 541-543 (1990). [CrossRef]
  15. K. Y. Kim, H. S. Tae, and J. H. Lee, "Measurement of dielectric and radiation losses for flexible circular dielectric waveguides in Q-band," Microwave Opt. Technol. Lett. 35, 102-106 (2002). [CrossRef]
  16. HFSS, Version 9.2.1, Agilent Technologies.
  17. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity float-zone silicon," J. Opt. Soc. Am. B 21, 1379-1386 (2004). [CrossRef]
  18. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  19. M. J. King and J. C. Wiltse, "Surface-Wave Propagation on Coated or Uncoated Metal Wires at Millimeter Wavelengths," IEEE Trans. Antennas Propag. 10, 246-254 (1962). [CrossRef]
  20. W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Curvature and microbending losses in single-mode optical fibres," Opt. Quantum. Elect. 11, 43-59 (1979). [CrossRef]
  21. T.-I. Jeon and D. Grischkowsky, "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet" Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  22. A. T. James and A. J. P. Martin, "Gas-Liquid Partition Chromatography - The Separation And Micro-Estimaton Of Volatile Fatty Acids From Formic Acid To Dodecanoic Acid," Biochem. J. 50,679-690 (1952). [PubMed]
  23. SGE Fused Silica Tubing, Part No 062710, http://sge.com.au/htm/gc/supplies/tubing/fused_silica_nondeac.asp
  24. M. Nagel, M. Först, and H. Kurz, "THz biosensing devices: fundamentals and technology," J. Phys. Condens. Matter 18, 601-618 (2006). [CrossRef]
  25. H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey and K. Ploog, "Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium," Appl. Phys. Lett. 70, 2233-2235 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited